Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭЛ.СНАБЖЕНИЕ(Зачет) ответы без-19,20,21,37.docx
Скачиваний:
116
Добавлен:
04.06.2015
Размер:
721.34 Кб
Скачать

36. Баланс активных и реактивных мощностей.

Активная мощность источников (турбогенераторов и гидрогенераторов электростанций, нетрадиционных источников, гидроаккумулирующих станций и др.) в любой момент времени соответствует потребляемой мощности (нагрузке) :

где ΣPи – суммарная активная мощность источников; ΣРсн – собственные нужды генерирующих источников; ΔРп – потери активной мощности.

Приведенное уравнение определяет баланс активных мощностей в электрической системе.

Баланс активных мощностей соответствует определенным значениям частоты и напряжения в узлах, к которым подключены потребители (нагрузки). Изменение мощности источников связано с изменением частоты и напряжения очевидным равенством, получающимся разложением в ряд Тейлора функции ΣРн = F(f; U):

При нарушении баланса мощностей вследствие снижения генерирующей мощности или увеличения потребления активной мощности устанавливается режим с изменившимися значениями составляющих уравнения баланса мощности. Снижение генерируемой мощности приводит к уменьшению

частоты и напряжения в системе и, наоборот, с увеличением мощности источников возрастают частоты тока и напряжения одинаково в любом узле электрической системы. Воздействовать на изменение частоты можно только изменением генерируемой активной мощности. На тепловых и гидравлических электростанциях это достигается увеличением или уменьшением выпуска энергоносителя, т. е. пара или воды.

Уравнение баланса реактивной мощности:где ΣQг, ΣQc, ΣQк – реактивная мощность, генерируемая генераторами электростанций, компенсирующими устройствами (синхронными компенсаторами, конденсаторами и другими устройствами, а также емкостями воздушными кабельных линий); ΣQн + ΣQн + ΣΔQп – реактивная мощность, потребляемая нагрузками, а также собственными нуждами электроснабжения и обусловленная потерями в элементах систем электроснабжения. Реактивная или обменная мощность существенно влияет на такие параметры систем электроснабжения, как потери мощности и энергии и уровни напряжения в узлах сети.

38.Компенсирующие устройства.

Батареи статических конденсаторов (БК) могут работать лишь как источники реактивной мощности. Их выпускают на различные номинальные напряжения и мощности. БК на напряжение до 1000 В обычно включаются по схеме треугольника, так как при этом к конденсатору приложено линейное напряжение и в три раза увеличивается реактивная мощность по сравнению с соединением в звезду:,где Uл – линейное напряжение сети; С – емкость трех фаз батарей; ω – угловая частота.

Достоинства БК: 1) малые удельные потери активной мощности (0,0025–0,005 Вт/вар); 2) простота производства монтажных работ (малые габариты, масса, отсутствие фундаментов); 3) простота эксплуатации (ввиду отсутствия вращающихся и трущихся частей); 4) возможность их установки в центре реактивных нагрузок или около электроприемников; 5) для установки конденсаторов может быть использовано любое сухое помещение; 6) возможность постепенного увеличения мощности БК.

Недостатки БК: 1) зависимость генерируемой РМ от напряжения; 2) недостаточная прочность, особенно при КЗ и перенапряжениях; 3) малый срок службы; 4) пожароопасность; 5) наличие остаточного заряда; 6) перегрев при повышении напряжения и наличии в сети высших гармоник, ведущих к повреждению конденсаторов; 7) сложность регулирования РМ (РМ регулируется ступенчато).

Для плавного регулирования реактивной мощности применяются непосредственные преобразователи частоты (НПЧ). Такой компенсатор представляет собой нерегулируемый генератор высокой частоты, включенный через НПЧ (рис. 16.5, а).

В зависимости от соотношения напряжений сети иа, иь, ис и напряжений на выходе НПЧ ual, ubv ucl компенсатор может генерировать или потреблять реактивную мощность. При этом от генератора высокой частоты реактивная мощность в любом случае потребляется. Учитывая это, в качестве генератора можно использовать статическое устройство, содержащее LC-контуры (рис. 16.5, б). Так как конденсаторы в рассматриваемом компенсаторе работают на высокой частоте, он имеет некоторое преимущество по габаритным размерам и стоимости по сравнению с другими типами компенсаторов.

В качестве источников реактивной мощности для прямой компенсации также используются компенсаторы с искусственной коммутацией тиристоров. Такой компенсатор представляет собой параллельное соединение двух трехфазных преобразователей. Изменение знака угла управления тиристоров достигнуто искусственной коммутацией тока в вентильных контурах напряжениями коммутирующих конденсаторов, а не напряжением сети.Косвенная компенсация реактивной мощности заключается в том, что параллельно нагрузке включается стабилизатор реактивной мощности, обеспечивающий неизменную величину суммарной реактивной мощности

QΣ = Qн (t ) +Qст (t ) = const, где Qн(t) – реактивная мощность нагрузки; Qст(t) – реактивная мощность стабилизатора.

Рис. 16.5. Установка прямой компенсации реактивной мощности с непосредственным пре-

образователем частоты (а), с непосредственным преобразователем частоты и LC-контурами (б)

Суммарная реактивная мощность QΣ компенсируется с помощью БК. В качестве стабилизаторов в настоящее время используются тиристорные

компенсаторы реактивной мощности.

Наиболее широкое распространение получили компенсаторы с фазоуправляемыми тиристорными ключами. На рис. 16.6, а представлена схема

однофазного тиристорного фазоуправляемого ключа. Угол управления а изменятся в пределах от 0 до π/2. Если допустить, что активное сопротивление реактора равно нулю, то для интервала проводимости тиристоров можно записать ,отсюда ток через индуктивность

,где

Рис. 16.6. Схема фазоуправляемого тиристорного регулятора (а), кривые тока i(t), напряжения u(t) при угле управления а ≠ 0 (б) Ток компенсатора при угле управления α ≠ 0 становится несинусоидальным. Кривые тока i(t), напряжения u(t) компенсатора при угле управления α ≠ 0 приведены на рис. 16.6, б.