Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимическая эволюция.docx
Скачиваний:
36
Добавлен:
10.06.2015
Размер:
1.19 Mб
Скачать

Предварительные рассуждения Биомолекулы

Основная статья: Биомолекулы

Пребиотический синтез сложных соединений молекул может делиться на три последовательных этапа:

  1. Возникновение простых органических соединений (спиртов,кислот,гетероциклических соединений:пуринов,пиримидиновипирролов) из неорганических материалов.

  2. Синтез более сложных органических соединений — «биомолекул» — представителей наиболее распространённых классов метаболитов, в том числе имономеров— структурных единиц биополимеров (моносахаридов,аминокислот,жирных кислот,нуклеотидов) из простых органических соединений.

  3. Возникновение сложных биополимеров(полисахариды,белки,нуклеиновые кислоты) из основных структурных единиц — мономеров.

Биомолекулы — возникновение и функция

Одним из вопросов является химический состав среды, в которой осуществлялся пребиологический синтез, в том числе то, какие неорганические компоненты являлись источниками различных элементов, входящих в состав различных органических соединений.

Элементный состав биомолекул:

 

C

H

O

N

S

P

Углеводы

X

X

X

 

 

 

Жиры

X

X

X

X

 

 

Фосфолипиды

X

X

X

X

 

X

Белки

X

X

X

X

X

 

Нуклеотиды

X

X

X

X

 

X

Порфирины

X

X

X

X

 

 

Возможные неорганические источники элементов:

 

Восстановленная форма

Окислённая форма

Углерод(C)

Метан(CH4),Монооксид углерода(угарный газ, CO)

Углекислый газ(CO2)

Водород(H)

Водород(H2)

Вода(H2O)

Кислород(O)

H2O

Кислород(O2)

Азот(N)

Аммиак(NH3)

Нитраты(NO3-)

Сера(S)

Сероводород(H2S)

Сульфаты(SO42-)

Фосфор(P)

 

Фосфаты(PO43-)

Все гипотезы исходят из того, что помимо воды и фосфатов на начальных этапах истории Земли в атмосфере и гидросфере в достаточном количестве имелись только восстановленные формы, отличающиеся от обычных в современный период химических соединений, так как древняя атмосфера не содержала молекулярного кислорода.

В качестве источника энергии, инициирующей синтез, в это время могли выступать ультрафиолетовое излучениеСолнца, тепловулканических процессов,ионизирующие излучениярадиоактивного распадаиэлектрические разряды. Существуют также теории, в рамках которых источником необходимой для возникновения биомолекул энергии могут служитьокислительно-восстановительные процессымежду вулканическими газами (восстановитель) и частично окисляющими сульфидными минералами, например пиритом (FeS2)

Развитие древней атмосферы

Развитие земной атмосферы является частью химической эволюции и к тому же важным элементом истории климата. Сегодня её разделяют на четыре важные ступени развития.

Вначале происходило образование химических элементов в космосе и появление из них земли — приблизительно 4,56 миллиардов лет назад. Предположительно наша планета уже довольно рано имела атмосферу из водорода(H2) игелия(He), которая, однако, была снова потеряна в космическое пространство. Астрономы исходят также из того, что из-за относительно высоких температур и эффектов солнечного ветра на земле и других близлежащих к солнцу планетах могло остаться только небольшое количество лёгких химических элементов (включаяуглерод,азотикислород). Все эти элементы, составляющие сегодня основную часть биосферы, были занесены, по этой теории, ударами комет из более внешних участков солнечной системы лишь через большой промежуток времени, когда протопланеты немного остыли. В течение первых нескольких миллионов лет после возникновения солнечной системы постоянно повторялись столкновения с небесными телами, вызванные ими коллизии уничтожали глобальными стерилизациями образованные в это время живые системы. Поэтому появление жизни смогло начаться только после накопления воды за длительное время хотя бы в самых глубоких впадинах.

Следы вулканической активности: отложения серы на краях Halema’uma’u-кратера вулкана Мауна Лоа на Гаваях

Извержение вулкана — самая захватывающая форма вулканической деятельности

С медленным остыванием земли, вулканической деятельностью (выделение газов из недр земли) и глобальным распределением материалов упавших комет возникла вторая атмосфера земли. Скорее всего она состояла из водяного пара (H2O до 80 %), углекислого газа (CO2; до 20 %), сероводорода (до 7 %), аммиака и метана. Высокий процент водяного пара объясняется тем, что поверхность земли была на тот момент ещё слишком горяча для образования морей. Прежде всего из воды, метана и аммиака в условиях молодой земли могли образоваться небольшие органические молекулы (кислоты, спирты, аминокислоты), позднее также органические полимеры (полисахариды, жиры, полипептиды), которые были нестабильны в кислотной атмосфере.

После охлаждения атмосферы ниже температуры кипения воды наступил очень длительный период выпадения дождей, которые и образовали океаны. Насыщенность других газов атмосферы относительно водяного пара повысилась. Интенсивное ультрафиолетовое облучение обусловило фотохимический распад воды, метана и аммиака, в результате чего накопились углекислый газ и азот. Лёгкие газы — водород и гелий — уносились в космос, углекислый газ растворялся в больших количествах в океане, увеличивая кислотность воды. Значение pH упало до 4. Инертный и малорастворимый азот N2накапливался со временем и образовывал около 3,4 миллиардов лет назад основную составляющую атмосферы.

Выпадение в осадок прореагировавшего с ионами металлов растворенного углекислого газа (карбонаты) и дальнейшее развитие живых существ, которые ассимилировали углекислый газ, привело к уменьшению CO2-концентрации и повышению значения pH в водоёмах.

Кислород O2играет важнейшую роль в дальнейшем развитии атмосферы. Он образовался с появлением способных кфотосинтезуживых существ, предположительноцианобактерий(сине-зелёных водорослей) или им подобныхпрокариотов. Ассимиляция ими углекислого газа привела к дальнейшему понижению кислотности, насыщенность атмосферы кислородом оставалась всё-таки довольно низкой. Причина этого — незамедлительное использование растворенного в океане кислорода для окисления двухвалентных ионов железа и других окисляемых соединений. Около двух миллиардов лет назад этот процесс завершился, и кислород стал постепенно накапливаться в атмосфере.

Очень реакционноспособный кислород легко окисляет восприимчивые органические биомолекулы и становится таким образом фактором отбора окружающей среды для ранних организмов. Только немногие анаэробные организмы смогли переместиться в свободные от кислорода экологические ниши, другая часть выработала ферменты (например, каталазы), которые делают кислород не опасным. В некоторых микроорганизмах из подобных энзимов развились комплексные мембранные энзимы — конечные оксидазы, которые метаболически использовали присутствующий кислород для накопления энергии необходимой для роста собственной клетки — конечная стадия окисления в аэробной цепи дыхания. В зависимости от организма имеются различные формы конечных оксидаз, например хинол-оксидаза или цитохром C — оксидаза, которые различаются активными центрами, содержащими ионы меди и гемы. Это даёт основание полагать, что они произошли различными параллельными путями развития. Во многих случаях в одном организме встречаются различные типы конечных оксидаз. Эти энзимы являются последними в цепи последовательно задействованных комплексов энзимов, которые энергию окислительно-восстановительных процессов сохраняют переносом протонов или ионов натрия в форме трансмембранного электрического потенциала. Последний другим комплексом энзимов преобразовывается снова в химическую энергию в форме АТФ. Синтез АТФ и прочих компонент цепи дыхания в эволюционном свете значительно старше конечных оксидаз, так как они играли важную роль уже во многих аэробных процессах обмена веществ (аэробное дыхание, многие процессы брожения, метаногенез), а также при аноксигенном и оксигенном фотосинтезе.

Миллиард лет назад содержание кислорода в атмосфере перешагнуло планку одного процента и спустя несколько миллионов лет был образован озоновый слой. Сегодняшнее содержание кислорода в 21 % было достигнуто лишь 350 миллионов лет назад и сохраняется с тех пор стабильным.

Соседние файлы в предмете Теория Эволюции