Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Перспективы развития картографии

.docx
Скачиваний:
17
Добавлен:
10.06.2015
Размер:
41.76 Кб
Скачать

В некоторых цифровых картах, помимо наборов абсолютных координат, каждый объект содержит информацию о своем расположении относительно других объектов карты. Также для высотных точек (линий) помимо координат x и y записывается третья координата z.

Любой объект имеет уникальный идентификатор, с помощью которого в рамках этого объекта осуществляется связь между объектной и пространственной моделями. Кроме того, каждый объект имеет собственные атрибутивные характеристики (т.е. специфическую информацию: например, для объекта «дорога» атрибутом будет «тип дорожного покрытия»). Атрибутивные данные хранятся в виде таблиц, каждая запись в которых соответствует определенному пространственному объекту. Эта связь также реализуется с помощью уникального идентификатора.

Одной из основных особенностей электронной карты является то, что она может быть организована как множество слоев. Слои построены на основе объединения пространственных объектов, имеющих какие-либо общие свойства или функциональные признаки. Такими свойствами могут быть принадлежность к одному типу пространственных объектов (жилые здания, подземные коммуникации, административные границы), представление одинаковыми графическими примитивами (точечные, линейные и полигональные объекты), отображение на карте одним цветом и т.д. Принадлежность объекта к слою позволяет использовать и добавлять групповые свойства объектам данного слоя. Кроме того, с помощью системы фильтров или заданных параметров объекты, принадлежащие слою, могут быть одновременно обработаны: масштабированы, перемещены, скопированы, записаны в базу данных. Также можно наложить запрет на редактирование объектов слоя, запретив их просмотр.

Многослойная организация электронной карты при наличии гибкого механизма управления слоями позволяет объединить и отобразить не только большее количество информации, чем на обычной карте, но су­щественно упростить анализ картографических данных путем селекции данных, необходимых для текущего рассмотрения, и применения меха­низма "прозрачности" электронной карты.

Таким образом, функционирование цифровой карты можно показать с помощью следующей схемы:

Современные электронные карты используют набор возможностей мультимедиа, что придает им большую выразительность и наглядность по сравнению с обычными картами. В качестве примера можно привести по­ставляемый на компакт-диске 3D-Atlas (abc and Electronic Arts). Система может рассматриваться для демонстрации электронных карт и как непол­ная ГИС для обучения. В 3D-Atlas информационная основа интегрирована на атласе мира. Система позволяет осуществлять наблюдение карт в раз­ных масштабах и допускает трехмерную визуализацию.

Возможно перемещение над поверхностью (режим "полет") с ви­зуальным эффектом полета в трехмерном пространстве.

Кроме наблюдения поверхности Земли в системе имеется возможность просмотра глобальных карт атмосферы, гидросферы, биосферы, геосфе­ры, литосферы, часовых поясов и т.п. Система позволяет просматривать атрибуты и проводить небольшие операции анализа данных.

Существует большое количество форматов электронных карт. Рассматри­вая эти форматы и способы их применения в России, можно условно вы­делить два подхода к обмену данными.

Первый подход заключается в применении форматов, которые описы­вают разные виды объектов с помощью графических примитивов, не ис­пользуя системы классификации и кодирования объектов. Например, так применяется формат DXF. Он имеет простую структуру и поддерживается многими прикладными системами.

Второй подход состоит в применении системы классификации и коди­рования, которая позволяет исключить описание внешнего вида объектов из файлов, предназначенных для обмена и хранения данных. Такой под­ход гарантирует однозначную интерпретацию объектов при конвертирова­нии данных между этими форматами, в том числе когда используются разные классификаторы, но их содержимое (соответствие кодов и объек­тов) известно.

Имеется определенная гибкость при конвертировании этих форматов в формат DXF, когда для одних и тех же объектов можно задать разные графические примитивы по требованию пользователей информации. Это обеспечивается применением таблиц, содержащих описание кодов объек­тов с помощью графических примитивов.

Таким образом, сущность цифровых моделей местности заключается в объединении пространственных характеристик объектов с их информационными свойствами, атрибутами. Информационные базы данных связываются с технологией электронных карт, что позволяет решать многочисленные проблемы современных геоинформационных систем.

Цифровые модели местности, планы, карты Использование новейших типов съемочных систем, переход к компьютерным технологиям и информационным системам по­зволяют получать и хранить полученную информацию о местно­сти в виде цифровых моделей, которые при необходимости могут быть представлены в визуализированном виде (на экране мони­тора или в графическом виде на бумаге). Графические планы и карты стали вторичны по отношению к цифровым моделям мест­ности. Моделью принято называть результат описания (моделирова­ния) какого-либо объекта, процесса или явления. Модель позво­ляет заменить изучаемый объект или явление его упрощенной формой без потери необходимой информации о нем. Модель не обязана быть абсолютно тождественной самому прообразу, но должна обладать достаточностью. Под достаточностью модели по­нимают такое ее приближение к прообразу, при котором погреш­ности модели не превышают допустимые погрешности измерения параметров прообраза. Процесс создания и изучения моделей — моделирование — одна из основных категорий теории познания: на идее моделиро­вания, по существу, базируется любой метод научного исследова­ния, как теоретический, так и экспериментальный. Моделирование может быть семантическим (словесным), ана­логовым и математическим. В фотограмметрии наиболее широкое распространение полу­чило математическое моделирование, которое описывает изучае­мые объекты или явления в виде: формул (аналитические модели); геометрических образов (геометрические модели); массивов чисел (цифровые модели). ^ Цифровая модель местности (ЦММ) представляет собой много­мерную цифровую запись информации о местности на магнитном носителе. В цифровых информационных потоках информация хранится поэлементно. Каждый элемент ЦММ имеет п численных характеристик, три из которых — пространственные координаты точки местности, остальные — закодированные числами семанти­ческие характеристики этой точки. Цифровую модель местности, содержащую информацию о пространственном положении объектов местности, а также семан­тическую информацию об этих объектах, можно представить как совокупность цифровой модели рельефа (ЦМР) и цифровой моде­ли ситуации (ЦМС). Под ЦМР понимают массив чисел, являющихся простран­ственными координатами точек местности. ЦМС также представ­ляет собой массив чисел, каждым элементом которого являются плановые координаты поворотных точек границ объектов и зако­дированная числами семантическая информация об этих объек­тах. Содержание контуров определяется тематикой модели ситуа­ции — это могут быть топографические элементы, сельскохозяй­ственные угодья, лесотаксационные единицы, почвенные разно­сти и т. п. Цифровые модели местности являются базой для создания ши­рокого спектра картографической продукции, используемой зем­леустроительными и кадастровыми службами. Это цифровые (электронные) карты, фотопланы, контурные фотопланы, топо­графические фотопланы, ортофотопланы, фотокарты, топографи­ческие планы, ЗБ-изображения. ^ Цифровая (электронная) карта (ЦК) — это объединение цифро­вой модели рельефа и нескольких цифровых моделей ситуации. Каждая ЦМС представляет собой так называемый слой ЦК. Все слои ЦК связаны между собой посредством ЦМР. Как правило, в цифровых картах используют географические координаты, поэтому цифровые карты не имеют масштаба. При визуализации цифровая карта может быть представлена в любом масштабе, но не крупнее того, точность которого соответствует точности исходных данных для создания ЦК. Цифровые карты содержат значительно больший объем инфор­мации, нежели традиционные графические карты, благодаря по­слойному ее хранению. Кроме того, цифровые карты физически не устаревают, не вет­шают. Информацию о местности на современном уровне поддер­живают ведением непрерывного мониторинга и картографическо­го дежурства. Фотоплан — фотографическое одномасштабное изображение местности в заданном, обычно стандартном масштабе, на которое нанесена координатная сетка. Как правило, фотопланы изготав­ливают в рамках трапеций государственной или условной раз­графки или на территорию отдельных землепользовании. На контурных фотопланах условными знаками показаны необ­ходимые элементы ситуации, некоторые элементы естественного рельефа: бровки балок, оврагов, линии резкого изменения крутиз­ны склонов, а также искусственные формы рельефа. На топографических фототанах условными знаками показана ситуация и нанесены горизонтали. После удаления фотоизображения контурные и топографичес­кие фотопланы превращаются соответственно в контурные и то­пографические планы. Иногда, например при проектировании противоэрозионных мероприятий, целесообразно сохранить фотоизображение, несу­щее максимум информации об эрозионных процессах. В таких случаях на топографических фотопланах число условных знаков уменьшается до необходимого минимума. В результате получается продукция, называемая фотокартой. Ортофотоплан — фотографическое изображение местности в ортогональной проекции. Первоначально по экономическим со­ображениям ортофотопланы изготавливали преимущественно на горные территории. В настоящее время ортофотопланы получают на различные районы местности с любыми превышениями и фор­мами рельефа. ЪТ>-изображение — это изображение трехмерных объектов на плоскости. Эта новая форма представления пространственной ин­формации находит широкое применение в различных сферах на­учной и производственной деятельности. ^ 12.5. ЦИФРОВЫЕ МОДЕЛИ РЕЛЬЕФА Цифровая модель рельефа (ЦМР) — это цифровое представле­ние земной поверхности как непрерывного явления, описываю­щее ее с определенной точностью. Под ЦМР понимают множе­ство точек с известными геодезическими координатами (Xе, У, 2Т) и правило определения высоты Z? любой другой точки, не вхо­дящей в это множество. Точки с известными геодезическими ко­ординатами в данном случае принято называть высотными пике­тами. Правило определения высоты называют правилом интерпо­ляции высот, или аналитической моделью рельефа (AMP). Методы построения цифровых моделей рельефа различаются по схемам расположения высотных пикетов и по способам интер­поляции высот в промежутках между ними. По схемам расположения высотных пикетов ЦМР делят на ре­гулярные, полурегулярные и структурные. В регулярных моделях высотные пикеты расположены в узлах се­ток квадратов, прямоугольников или равносторонних треугольни­ков (рис. 12.7). Недостатком этих моделей является то, что наибо­лее значимые точки рельефа, находящиеся на линиях тальвегов и водоразделов, перегибах скатов, могут оказаться между узлами сетки и не отобразиться на ЦМР. В связи с этим важно выбрать оптимальный шаг сетки, так как с его увеличением возрастают по­грешности ЦМР, а с уменьшением — объем ЦМР, время и сред­ства на ее создание. В полурегулярных моделях (рис. 12.8) высотные пикеты распола­гают на поперечниках к заданным линиям. Пикеты могут нахо­диться на поперечниках либо на одинаковых расстояниях дру друга, либо на перегибах скатов. Полурегулярные ЦМР в основ­ном используют при проекти­ровании трасс линейных соору­жений (дорог, линий электро­передач, нефте- и газопроводов и т. п.). Рис. 12.8. Полурегулярная цифровая модель рельефа Для наиболее правильного описания характера рельефа меньшим числом высотных пи- кетов создают структурные ЦМР (рис. 12.9). В этих моделях поло­жение высотных пикетов определяется структурой рельефа —их выбирают в его характерных точках. Координаты высотных пикетов, используемых для построения ЦМР, могут быть получены в результате полевых геодезических измерений, по топографическим картам, по результатам воздуш­ного и космического лазерного сканирования, путем стереофото-грамметрической обработки снимков. Для определения отметок точек, находящихся между высотны­ми пикетами, применяют различные способы линейного и нели­нейного интерполирования. При использовании регулярных ЦМР с малым шагом сетки от­метки промежуточных точек можно определить двойным линей­ным интерполированием (рис. 12.10). Высота /-Й точки с плановыми координатами (Х„ Yj) может быть определена с использованием полинома первой, второй и реже третьей степени