Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_modul.doc
Скачиваний:
184
Добавлен:
11.06.2015
Размер:
1.07 Mб
Скачать

23. Разновидности терапевтических методов

1. Франклинизация (электростатический душ) – метод лечения легкими аэроионами, образующимися в постоянном электрическом поле высокой разности потенциалов ().

Лечебное действие оказывают аэроионы и небольшое количество озона, которые вызывают раздражение рецепторов, что стимулирует обменные процессы.

2. Гальванизация – метод воздействия постоянным электрическим током .

При действии постоянного тока ионы (Na+, K+, Cl-, Mg+) движутся, накапливаются около мембран, что приводит к улучшению обменных процессов.

3. Лекарственный электрофорез (ионофорез) – введение лекарственных ионов в межклеточное пространство биоткани под воздействием постоянного тока. Вводимое вещество накапливается в виде ионов и находится от 3 до 20 суток в “кожном депо”, постепенно поступая в кровь (диффузия).

4. Электростимуляция – применение импульсных электрических токов различной формы и частоты (1 – 1000 Гц) для раздражения клеток, тканей и органов с целью изменения их функционального состояния.

5. Амплипульстерапия – метод воздействия на организм переменными синусоидальными токами средней частоты (2000 - 5000 Гц), модулированными по амплитуде низкой частотой в пределах 10 – 150 Гц.

7. УВЧ-терапия – лечебный метод, при котором на ткани больного воздействуют дистанционно переменным электрическим полем ультравысокой частоты (27,12 МГц и 40,68 МГц).

Физиотерапевтический эффект: селективный глубокий нагрев биологических тканей обогащенных липидами. Происходит выделения тепла:

в проводящих тканях ,– электропроводность, Е – напряженность электрического поля,

вдиэлектриках,– угол диэлектрических потерь (сдвиг фаз между током и напряжением), ε – относительная диэлектрическая проницаемость среды,– циклическая частота электрического поля.

8. Дарсонвализация – метод лечения с помощью сложных модулированных импульсов. Частота несущей равна 110 кГц, а низкая частота – 50 Гц. .

Действующим фактором являются не только импульсные переменные токи высокого напряжения средней частоты, но и искровой разряд. Высокая разность потенциалов приводит к возникновению разрядов, стимулирует обменные процессы, оказывает раздражающее действие.

9. Индуктотермия – лечебное воздействие переменным магнитным полем высокой частоты (10 – 15 МГц). Тепловой эффект обусловленный образованием вихревых электрических токов в веществе. Используют для глубокого прогревания тканей обедненных липидами.

10. СВЧ - терапия – воздействие на вещество электромагнитными волнами дециметрового и сантиметрового диапазона (интервал частот от 3.10Гц до 3.1010Гц).

Наибольшее поглощение энергии волны и выделение теплоты происходит в водосодержащих тканях за счет возникновения токов смещения.

СВЧ-излучение используется для сушки и нагрева лекарственного сырья, для активации ферментных препаратов, а также для стерилизации в расфасованном виде готовой фармацевтической продукции (мазей, паст, капсул, таблеток).

11. КВЧ-терапия – воздействие на вещество электромагнитными волнами миллиметрового диапазона (интервал частот 3.1010  Гц до 3.1011 Гц ). Данная терапия обладает низкой проникающей способностью (0,2 – 0,3 мм). В результате происходит перестройка структурных элементов кожи, что способствует улучшению трофики нервной, вегетативной и эндокринной систем.

На частотах КВЧ-диапазона происходит резонансное поглощение электромагнитных волн в мембранных структурах клеток (“микроволновая резонансная терапия” или “квантовая медицина”).

25. Тепловое излучение – это электромагнитное излучение тел, возникающее за счет изменения их внутренней энергии (энергии теплового движения атомов и молекул).

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн.

Инфракрасные лучи занимают диапазон электромагнитных волн с длиной волны от 760 нм до 1-2 мм.

Источник теплового излучения: любое тело, температура которого превышает температуру абсолютного нуля.

Характеристики теплового излучения

Поток излучения (Ф) – количество энергии, которое излучается (поглощается) с выбранной площади (поверхности) по всем направлениям за единицу времени.

, .

2. Интегральная излучательная способность (R)– поток излучения с единицы площади поверхности.

, , .

3. Спектральная излучательная способность () – интегральная излучательная способность, относимая к единице спектрального интервала

, ;

где интегральная излучательная способность;

–ширина интервала длин волн ().

4.  Интегральная поглощательная способность (коэффициент поглощения) –отношение поглощенной телом энергии к падающей энергии.

,

безразмерная величина,

–поток излучения, который поглощается телом;

–поток излучения, что падает на тело.

Рис. 39

5. Спектральная поглощательная способность – коэффициент поглощения, относимый к единичному спектральному интервалу:

, безразмерная величина.

26. 1. Закон Кирхгофа (1859 г.): Отношение спектральной излучательной способности тел к их спектральной поглощательной способности не зависит от природы излучающего тела и равно спектральной излучательной способности абсолютно черного тела при данной температуре:

где– спектральная излучательная способность абсолютно черного тела.

Тепловое излучение является равновесным – сколько энергии излучается телом, столько ее им и поглощается.

Рис. 41. Кривые распределения энергии в спектрах теплового излучения

различных тел (1 – абсолютно черное тело, 2 – серое тело,

3 – произвольное тело)

2. Закон Стефана – Больцмана (1879, 1884): интегральная излучательная способность абсолютно черного тела () прямо пропорциональна четвертой степени его термодинамической температуры (Т).

где постоянная Стефана – Больцмана

3. Закон Вина (1893): длина волны, на которую приходится максимум спектральной излучательной способности данного тела, обратно пропорциональна температуре.

, где =– постоянная Вина.

Рис. 42. Спектры теплового излучения абсолютно черного тела при различных температурах

 Тепловое излучение тела человека

Тело человека имеет постоянную температуру благодаря терморегуляции. Основной частью терморегуляции является теплообмен организма с окружающей средой.

Теплообмен происходит с помощью таких процессов:

а) теплопроводность (0 %), б) конвекция (20 %), в) излучение (50 %), г) испарение (30 %).

Диапазон теплового излучения тела человека

Температура поверхности кожи человека: .

По закону Вина .

Длина волны соответствует инфракрасному диапазону, потому не воспринимается глазом человека.

Абсолютно черное тело. Серые тела

А

Рис. 40. Модель абсолютно

черного тела

бсолютно черное тело – это тело, которое поглощает всю падающую энергию.

Коэффициент поглощения абсолютно черного тела и не зависит от длины волны.

Примеры абсолютно черного тела: сажа, черный бархат.

Серые тела – тела, у которых .

Пример: тело человека считают серым телом .

Черные и серые тела – это физическая абстракция.

27. Излучательная способность тела человека

Тело человека считается серым телом, так как частично излучает энергию () и поглощает излучение из окружающей среды ().

Энергия (), которую теряет человек за 1 секунду с 1своего тела вследствие излучения составляет:

,

где температура окружающей среды: , температура тела человека:.

Контактные методы определения температуры

Термометры: ртутные, спиртовые.

Шкала Цельсия: t°C

Шкала Кельвина: T = 273 + t°C

Шкала Фаренгейта:

Термография – это метод определения температуры участка тела человека дистанционно путем оценки интенсивности теплового излучения.

Приборы: термограф или тепловизор (регистрирует распределение температур на выбранном участке человека).

30. Рентгеновское излучение – это электромагнитные волны в пределах длин

от 10-7 до 10-14 м.

Свойства рентгеновских лучей:

Способность вызывать свечение некоторых веществ (люминофоров).

Значительная проникающая способность (проходят через стекло, бумагу, дерево, эбонит, вещества малой атомной массы; задерживаются свинцом).

Оказывают ионизирующее действие.

Засвечивают фотохимические материалы.

Не отклоняются в магнитном поле, не заряжены.

Одним из источников рентгеновского излучения является рентгеновская трубка.

Рентгеновская трубка – это вакуумный прибор с двумя электродами: катодом (–) и анодом (+).

Давление в трубке 10-5–10-6 мм рт.ст. (рис. 43).

Рис. 43

Если кВ – диагностическое рентгеновское излучение;

если кВ – терапевтическое (для удаления опухолей).

При подогреве катода излучаются электроны. Попадая в электрическое поле между катодом и анодом электроны разгоняются до больших скоростей и тормозятся веществом анода.

С движением электрического заряда связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и, согласно теории

Максвелла, появляется электромагнитная волна (рентгеновское излучение).

,

где А – работа по перемещению электрона в рентгеновской трубке;

q – заряд электрона; U – ускоряющее напряжение;

–скорость электрона перед анодом; m – масса электрона;

–скорость электрона после взаимодействия с анодом, ();

h – постоянная Планка; – частота рентгеновского излучения;

Q – количество теплоты, выделяющееся в веществе анода.

31. Тормозное и характеристическое рентгеновское излучение

При торможении быстрых заряженных частиц атомами вещества анода возникает электромагнитное излучение, которое называют тормозным рентгеновским излучением.

При торможении большого количества электронов образуется сплошной (непрерывный) спектр рентгеновского излучения.

Ф

Рис. 44. Спектр тормозного рентгеновского излучения

Короткое излучение возникает, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

; м, с =3.108 м/с.

Поток рентгеновского излучения (Ф):

Z – порядковый номер атома вещества анода;

k =– коэффициент пропорциональности;

I – сила тока в рентгеновской трубке;

U – напряжение в рентгеновской трубке.

У

величивая напряжение на рентгеновской трубке, на фоне сплошного спектра появляется линейчатый спектр, который соответствует характеристическому рентгеновскому излучению (рис. 45).

Характеристическое рентгеновское излучение возникает из-за того, что некоторые ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, испуская рентгеновские кванты электромагнитного излучения:

С увеличением заряда атома анода увеличивается частота излучаемого характеристического излучения. Такую закономерность называют законом Мозли:

,

где – частота спектральной линии характеристического рентгеновского излучения;

Z – атомный номер испускающего элемента; А и В – постоянные.

Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра.

32. Одним из источников рентгеновского излучения является рентгеновская трубка.

Рентгеновская трубка – это вакуумный прибор с двумя электродами: катодом (–) и анодом (+).

Давление в трубке 10-5–10-6 мм рт.ст. (рис. 43).

33. Взаимодействие рентгеновского излучения с веществом

Взаимодействия рентгеновского излучения с веществом определяются соотношением между энергией кванта рентгеновского излучения и работой ионизации атома (Аи).

Аи – это работа, необходимая для отрыва от атома электрона и превращения его в электрически заряженный ион.

Если , то возникает упругое рассеяние, частота и длина волны не изменяются (при столкновении с атомом рентгеновское излучение меняет только направление).

Если , , то энергия падающего кванта расходуется на ионизацию атома и на кинетическую энергию электрона (вследствие ионизации атома меняется структура молекул).

Если ,, то вещество ионизируется и появляетсявторичное рентгеновское излучение (>, < ).

34. В результате взаимодействия рентгеновского излучение с веществом интенсивность рентгеновский лучей уменьшаетсяя по закону Бугера-Ламберта:

,

где – интенсивность падающего на

вещество рентгеновского излучения;

–интенсивность рентгеновского

излучения, прошедшего через вещество;

–толщина вещества;

–линейный коэффициент ослабления рентгеновского излучения веществом.

, .

~ ,

где – плотность биотканей;

–длина волны рентгеновского излучения;

Z – порядковый номер атома вещества.

ZCa=20, ZP = 15, ZO = 8, ZH = 1.

Кости значительнее поглощают рентгеновские лучи, чем мягкие ткани, поэтому на рентгеновском снимке более светлые.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Например, сульфат бария для желудка и кишечника.

35.1. Рентгенография – получение изображения внутренних органов на фотопленке.

фотопленка

2. Флюорография – это рентгенография на малоформатных пленках

Метод рентгеноструктурного анализа включает исследования характеристических спектров, на основе которых проводят качественный и количественный анализ структуры веществ. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премией.

Рентгеноструктурный анализ, основанный на дифракции рентгеновских лучей, используют для исследования лекарственных и биологически активных веществ. Перспективы использования этого метода в фармации связаны с идентификацией кристаллических лекарственных веществ, их полиморфных модификаций, с поиском новых комплексных координационных соединений для создания новых медицинских препаратов и биостимуляторов, с исследованием элементного и фазового состава неорганических и органических лекарственных веществ.

.

36. Ядерная физика занимается изучением атомных ядер. Ядра состоят из протонов и нейтронов, называемыхнуклонами.

Размер (диаметр) атома da ~ , размер ядра dя ~ .

Символика обозначения ядра: , где

Z – число протонов в ядре (порядковый номер элемента в таблице Менделеева);

A – массовое число (количество нуклонов в ядре): A=Z+N ;

N – количество нейтронов в ядре: N=AZ . .

Изотопы – ядра с одинаковым количеством протонов (Z) и различным количеством нейтронов (N).

Массы ядер принято измерять в атомных единицах массы (а.е.м.), выбранных таким образом, что масса изотопа углерода в точности равна 12.000 а.е.м.

протон q = 1,6.10-19 Кл mp = 1,007 а.е.м.

нейтрон q =0 Кл mn = 1,008 а.е.м.

37.Энергия связи ядра – энергия, которую необходимо затратить, чтобы разделить ядро на нуклоны:

Энергия связи ядра измеряется в МэВ (мегаэлектронвольтах):

1 МэВ = 106 эВ = 106 .1,6 . 10 – 19 Дж = 1,6 . 10 – 13 Дж.

Дефект массы ():

Радиоактивность – способность некоторых ядер самопроизвольно распадаться с испусканием других ядер и элементарных частиц.

Основные типы радиоактивности

1. -распад – распад ядер, который сопровождается испусканием -частиц (ядер атома гелия):

Пример: .

2. - распад – самопроизвольное превращение протонов и нейтронов внутри ядра.

a) электронный ():

(антинейтрино)

Пример:  .

б) позитронный ():

(нейтрино)

Пример: .

в) е – захват – захват электрона с ближайшей орбиты:

.

Пример: .

3. -излучение – это фотон очень высокой энергии (коротковолновое электромагнитное излучение с длинной волны м).

-квант энергии возникает при переходе ядра из возбужденного состояния (энергия Е2) в невозбужденное (энергия Е1):

.

Закон радиоактивного распада. Период полураспада. Активность

Закон радиоактивного распада выражает зависимость нераспавшихся ядер от времени:

N – количество нераспавшихся ядер в

момент времени t;

N0 – количество ядер в начальный момент времени;

–постоянная радиоактивного распада Рис. 47. График закона радиоактивного распада

Период полураспада (Т) – время, в течении которого распадается половина ядер радиоактивного образца.

Если t = Т, то .

Активность (А) – скорость радиоактивного распада (количество распадов за единицу времени).

А=.

Единицы измерения: СИ [А] = Бк (беккерель);

внесистемная [А] = Ки (кюри). 1 Ки = 3,7 . 1010 Бк.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]