Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТАТИСТИКА ТЕМА 4.doc
Скачиваний:
3
Добавлен:
05.02.2016
Размер:
58.88 Кб
Скачать

2. Найважливіші математичні властивості дисперсії

Властивості дисперсії випадкової величини, які постійно використовуються у ймовірносно-статистичних методах:

o якщо x - випадкова величина, а і Ь - деякі числа, У = ах+Ь, то

D[ax+b] = a2D[X] (3.31)

(це значить, що число а як параметр масштабу суттєво впливає на дисперсію, тоді як число b - параметр зсуву на значення дисперсії не впливає);

o якщо X1, X2, Xn - попарно незалежні випадкові величини (тобто Xt і X незалежні для i Ф j ), то дисперсія суми дорівнює сумі дисперсій

D[X1 + X2 + ... + Xn] = D[X1] + D[X2] + ...+D[Xn]. (3.32)

Співідношення щодо математичного сподівання (3.25) і дисперсії (3.32) мають важливе значення при вивченні вибіркових властивостей, оскільки результати вибіркових спостережень або вимірів розглядаються в математичній статистиці, як реалізації незалежних випадкових величин.

З дисперсією випадкової величини тісно зв'язаний ще один показник мінливості - стандартне відхилення.

Означення. Стандартним відхиленням випадкової величини x називається невід'ємне число

SD[ X ] = +VD[X]. (3.33)

Оже, стандартне відхиленнях однозначно зв'язано з дисперсією

У теорії та практиці статистичних досліджень також важливу роль відіграють спеціальні функції - так звані моменти (початкові і центральні), які є характеристиками випадкових величин.

Означення. Початковим моментом k-то порядку випадкової величини x називається математичне сподівання k-ї степені цієї величини:

~k = M[ Xk ].15 (3.34)

Означення. Центральним моментом k-то порядку випадкової величини x називається математичне сподівання k-ї степені відхилення цієї величини x від його математичного сподівання:

m = m[x - M(X)Y, (3.35)

або mk = M[X - a]k, де a = M[X].

Для позначення мометнів випадкових величин використовуємо ті ж самі літери, що і для мометнів варіаційного ряду, але з додатковим знаком ~ ("тільда").

Як і для варіаційних рядків моменти дискретних випадкових величин мають аналогічний сенс:

Перший початковий момент (¿=1) випадкової величини Хе її математичним сподіванням:

~1 = М[Х] = ц. (3.36)

Другий центральний момент (¿=2) визначає дисперсію 0[Х] випадкової величини x:

Шг (хі - а)2 рі = ЦХ] = (Т2. (3.37)

Третій центральний момент (¿=3) характеризує асиметрію розподілу випадкової величини x

Коефіцієнт асиметрії а розподілу випадкової величини x має вигляд:

-Г = ~X(хі " а)3Рі = А. (3.38)

Четвертий центральний момент (¿=4) характеризує крутість розподілу випадкової величини.

На основі порівняння значень теоретичних і вибіркових моментів виконується оцінювання параметрів розподілів випадкових величин

Як відзначалося вище, в математичній статистиці використовуються два паралельних рядка показників: перший - має відношення до практики (це показники вибірки), другий - базується на теорії (це показники імовірнісної моделі).

Отже, метою описової статистики є перетворення сукупності вибіркових емпіричних даних на систему показників - так званих статистик, що мають відношення до реально існуючих об'єктів. Так, психологи, педагоги, інші фахівці працюють у реальній сфері, об'єктами якої є особи, групи осіб, колективи, характеристиками для яких служать емпіричні показники. Проте основна мета дослідження - це здобуття нового знання, а знання існує в ідеальній формі у вигляді характеристик теоретичних моделей. Звідси виникає проблема коректного переходу від емпіричних показників реальних об'єктів до показників теоретичної моделі. Цей перехід потребує аналізу як загальних методичних підходів, так і строгих математичних підстав. Принципову можливість тут відкриває закон великих чисел, теоретичне обгрунтування якому було надане Якобом Бернуллі (1654-1705), Пафнутієм Львовичем Чебишевим (1821-1894) та іншими математиками XIX ст.