Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
практика патфиза.docx
Скачиваний:
100
Добавлен:
09.02.2016
Размер:
322.2 Кб
Скачать

Принцип подсчета количества ретикулоцитов при помощи люминесцентной микроскопии

Использование способности субстанции ретикулоцитов флюоресцировать после обработки крови акридиновым оранжевым.

Реактивы

  1. Раствор акридинового оранжевого на изотоническом растворе хлорида натрия в концентрации 1:5000. Для приготовления изотонического раствора рекомендуют использовать дистиллированную воду pH 5,8 – 6,8. Раствор акридинового оранжевого должен быть свежим; хранят его не более 3 – 5 дней в темном флаконе с притертой пробкой.

  2. Нефлюоресцирующее иммерсионное масло. Можно использовать афлуоль или обычное иммерсионное масло с флюоресценцией, погашенной нитробензолом (0,3 мл нитробензола на 1 мл масла). Ю.Н. Зубжицкий в качестве нефлюоресцирующего масла предлагает использовать перегнанный анизол.

Специальное оборудование

Микроскоп ультрафиолетовый МУФ-3М или люминесцентный.

Ход определения

Кровь смешивают с акридиновым оранжевым в пробирке или смесителе в соотношении 1 часть крови и 10 частей краски (смесь можно хранить не более 5 часов). Смесь перемешивают в течение 2 минут, каплю смеси наносят на предметное стекло и накрывают покровным стеклом. При этом жидкость не должна выходить за пределы покровного стекла. Микроскопируют с помощью светофильтра ЖС-17. В препарате эритроциты имеют темно-зеленые очертания и не флюоресцируют, а в ретикулоцитах зернисто-сетчатая субстанция светится ярко-красным цветом, благодаря чему ретикулоциты легко подсчитать. Замечено, что в крови, стабилизированной гепарином или цитратом натрия, флюоресценции ретикулоцитов не наблюдается.

Подсчитывают 1000 клеток (эритроцитов и ретикулоцитов), подобноподсчету ретикулоцитов в мазках, после окраски специальными красителями. Результат выражают в процентах или промилле.

Определение количества гемоглобина

17 Авг 2008, Автор: dok

Гемоглобин — это кровяной пигмент, роль которого заключается в фиксации и переносе кислорода от легких к тканям и доставке углекислоты от тканей в легкие. Образование гемоглобина начинается в период превращения безофильного нормоцита в полихроматофильный и заканчивается на стадииретикулоцита; полихроматофильная окраска цитоплазмы эритроцита зависит именно от начинающейся гемоглобинизации клетки.

Методика определения. В настоящее время в качестве унифицированного(наиболее точного и надежного) признан цианметтемоглобиновый (гемиглобинцианидный) метод определения гемоглобина крови. Он основан на том, что при взаимодействии железосинеродистого калия (красной кровяной соли) с гемоглобином последний окисляется в метгемоглобин (гемиглобин), а затем подвлиянием СN-ионов ацетонциангидрина образуется окрашенный в красный цвет комплекс — цианметгемоглобин или гемиглобинцианид (НbiCN). Его концентрация измеряется на фотоэлектроколориметре (длина волны 540 нм, зеленыйсветофильтр), а расчет концентрации гемоглобина производят по калибровочному графику. Определение гемоглобина с помощью гемометра Сали используется при отсутствии спектрофотометра или фотоэлектроколориметра. При этом гемоглобин крови при воздействии 0,1 N раствора НCl превращается в солянокислый гематин бурого цвета, интенсивность окраски которого сравнивается со стандартом. Метод Сали несложен, удобен в применении на практике, но недостаточно точен.

Традиционными единицами измерения содержания гемоглобина в крови являются грамм-проценты (г%) и единицы по Сали (или условные проценты, %). За идеальную норму принимают концентрацию гемоглобина в крови, равную 16,67 г% (или 166,7 г/л), что соответствует 100 единицам по Сали (или %). Коэффициентпересчета с единиц по Сали в г% равен 6. Единицами измерения гемоглобина по системе СИ являются граммы в 1 литре крови (г/л) и мкмоли в 1 литре крови (мкмоль/л). Коэффициент пересчета с г%, или г/100 мл, в г/л равен 10, а вмкмоль/л — 0,155. Пределы нормальных колебаний гемоглобина: для мужчин 13,2—16,4 г% (132—164 г/л) — 2,05—2,54 мкмоль/л — 79,2—98,4 ел. по Сали (%); для женщин 11,5—14,4 г% (115—144 г/л) — 1,78—2,23 мкмоль/л — 69—86,4 ед. поСали (%).

Понижение концентрации гемоглобина в крови (олигохромемия) наблюдается при анемиях как железодефицитных, так и В12-фолиево-дефицитных, повышение (гиперхромемия) обычно сочетается с увеличением количества эритроцитов и встречается при эритремии, легочно-сердечной недостаточности, врожденныхпороках сердца, сгущении крови.

Цветовой показатель крови является рассчетной величиной. Он показывает достаточно ли гемоглобинанаходится в одном эритроците.

Широкое использование цветового показателя в клинической лабораторной диагностике обусловлено простотой рассчета. Для определения его не нужны современное оборудование и материалы.

Для определения цветового показателя используют только два показателя -количество эритроцитов крови  и уровень гемоглобина.

Формула рассчета цветового показателя (ЦП):

ЦП = (гемоглобин (г/л) * 3) / первые 3 цифры количества эритроцитов в крови

Например, гемоглобин 134 г/л, эритроциты 4,26 млн/мкл, тогда цветовой показатель равен  (134 * 3) / 426 = 0,94.

Цветовой показатель в норме 0,85-1,05. При повышении цветового показателя говорят о гиперхромии эритроцитов, и при снижении - о гипохромии. Именно на основании этих данных можно определить вид анемииВ12-дефицитная анемия,фолиеводефицитная анемия принадлежит к гиперхромным, ажелезодефицитная и хроническая потгеморрагическая к гипохромным.

У автоматических анализаторов нет функции рассчета цветового показателя крови, но они определяют среднее содержание гемоглобина в одном эритроците (МСН), одного из эритроцитарных индексов. Определение МСН производят делением концентрации гемоглобина на число эритроцитов в одинаковом объеме крови (1 мкл). Практически среднее содержание гемоглобина в одном эритроците представляет частное отделения гемоглобина (Нb) (г/л) на число эритроцитов в миллионах.

Величину 33 пиктограмм (пиктограмм — 1х10—12), составляющую норму содержания гемоглобина в одном эритроците, условно принимают за 1 и обозначают как цветовой показатель. 

Мазки крови при острым лейкозе характеризуются лейкемическим провалом, т. е. присутствием бластов и зрелых лейкоцитов.

Подсчет лейкоцитарной формулы у больного с острым лейкозом.

Методика: Изучение мазка крови проводится с масляной иммерсионной системой. В окрашенных мазках дают оценку величины, формы, окраски и структуры клеток. При подсчете лейкоцитарной формулы нужно помнить, что различные виды лейкоцитов распределяются по стеклу неравномерно: более крупные клетки (моноциты, нейтрофилы) располагаются по периферии (вдоль верхнего и нижнего края мазка), а более легкие (лимфоциты) преобладают в центре мазка. Распространен следующий способ подсчета. По верхнему и нижнему краю мазка считают, передвигая мазок по зигзагообразной линии: 3 поля зрения по самому краю в горизонтальном направлении, затем по направлению к середине мазка, вновь направляют к краю, сосчитывают 3 поля зрения и т.д. В каждом участке двух мазков крови подсчитывают 50 клеток. Определив процентное соотношение видов лейкоцитов, зная их общее количество в крови, определяют лейкоцитарный профиль (абсолютное содержание каждого вида лейкоцитов в единице объема крови).

Пример. Общее количество лейкоцитов 6,0*109/л, лимфоцитов – 30%. Абсолютное содержание лимфоцитов в крови составляет 1,8*109/л.

В мазках крови и костном мозге при хроническом миелоидном лейкозе обнаруживают базофильно-эозинофильную ассоциацию клеток, все стадии созревания гранулоцитов от миелобласта до сегментоядерных лейкоцитов (промиелоциты, миелоциты, метамиелоциты, палочкоядерные).

В мазках крови и костного мозга при хроническом лимфолейкозе выявляют абсолютный лимфоцитоз (70-90% зрелых лимфоцитов), пролимфоциты, а в период бластного криза — лимфобласты. Патогномоничными являются клетки лейколиза (тени Боткина-Гумпрехта).

Лейкоцитарная формула — процентное соотношение различных форм лейкоцитов в крови, подсчитываемых в окрашенном мазке. Она подвержена значительным индивидуальным колебаниям (табл. 1). Для правильного представления о происходящих в крови сдвигах необходимо учитывать не только процентные (относительные), но и абсолютные величины (содержание каждого вида лейкоцитов в 1 мм3 крови). Для этого процент данных клеток умножают на общее число лейкоцитов крови без двух нулей. Например: число лейкоцитов в 1 мм3 крови — 6500, моноцитов — 7%. Абсолютное число моноцитов в 1 мм3 крови — 7X65=455. Содержание одного вида лейкоцитов (см.) может изменяться независимо от других. Так, при угнетении костного мозга абсолютное число нейтрофилов уменьшается, а лимфоцитов может остаться неизмененным, но процент их нарастает. Это будет относительным лимфоцитозом. Например: при брюшном тифе число лейкоцитов может снизиться до 3000 в 1 мм3, а лимфоцитов оказаться 50%. Между тем абсолютное число лимфоцитов здесь 50X30=1500, т. е. абсолютного лимфоцитоза нет. Сдвиги в лейкоцитарной формуле могут зависеть от перераспределения лейкоцитов в сосудистом русле или от изменения деятельности кроветворных органов. При ускоренной регенерации клеток, главным образом нейтрофилов, в крови увеличивается число палочкоядерных клеток, обнаруживаются молодые, незрелые формы — метамиелоциты,   миелоциты.   Такое изменение лейкоцитарной формулы (характерное, в частности, для воспалительных процессов) называется сдвигом нейтрофилов влево (увеличиваются числа на левой стороне записи). Изменения лейкоцитарной формулы нельзя рассматривать в отрыве от общей клинической картины. Так, например, для инфекций, вызванных кокковой флорой, типичен нейтрофильный лейкоцитоз со сдвигом влево и эозинопенией, для тифо-паратифозных заболеваний, вирусного гриппа, бруцеллеза характерна картина угнетения костного мозга с нейтропенией и относительным лимфоцитозом. Однако увеличение числа нейтрофилов при вирусном гриппе может свидетельствовать не только о выздоровлении, но и об осложнении болезни бактериальной инфекцией. При подсчете лейкоцитарной формулы следует обращать внимание и на патологические изменения в лейкоцитах: появление крупной («токсической») зернистости в нейтрофилах, свидетельствующей о тяжелой интоксикации у больного, дегенеративных изменений — вакуолизации цитоплазмы и ядер, пикноза (сморщивания) ядер и т. д. В том же мазке учитывают и изменения эритроцитов(см.).

Лейкоцитарная формула — процентное соотношение в крови отдельных видов лейкоцитов. Лейкоцитарные формулы составляют на основании подсчета в окрашенном сухом мазке крови по возможности большего числа лейкоцитов, но не менее 200. Она позволяет оценивать функциональное состояние тех различных кроветворных тканей, которые поставляют в кровь отдельные виды лейкоцитов. Лейкоцитарная формула подвержена значительным колебаниям и у здоровых людей. Практически чаще всего пользуются Л. ф. крови человека, предложенной Шиллингом (V. Schilling) (табл. 1). Для правильного представления о реальных соотношениях отдельных форм лейкоцитов необходимо знать общее количество их в 1 мм3 крови и процентные показатели количества лейкоцитов перевести в абсолютные числа. Количество лейкоцитов отдельных видов может изменяться независимо друг от друга, в связи с чем следует различать их относительное и абсолютное увеличение и уменьшение. Например, при лимфолейкозе увеличивается как относительное, так и абсолютное количество лимфоцитов; относительное количество нейтрофилов остается низким, а абсолютное их число может увеличиться. Различают также два типа сдвига: регенеративный и дегенеративный. Первый состоит в численном увеличении юных и вместе с ними палочкоядерных с соответственным уменьшением сегментированных. Сдвиг этот указывает на «омоложение» белой крови в результате повышенной деятельности костного мозга и увеличенной убыли нейтрофилов. Сдвиг дегенеративный состоит в увеличении только одной формы — палочкоядерных. При этом общее количество лейкоцитов не увеличено, а нормально или даже уменьшено. Сдвиг этот указывает на угнетение функции костного мозга. Для наглядного отображения абсолютных количеств и соотношения отдельных форм лейкоцитов в 1 мм3 крови предложено графическое изображение лейкоцитарной формулы — так называемый лейкоцитарный профиль (рис. 1). За норму для взрослого человека приняты следующие цифры: нейтрофилы 3000—5500, лимфоциты 1200—2000, моноциты 200—600, эозинофилы 100—250, базофилы 0—80, а общее число лейкоцитов 4000—8000. Соединив в каждом столбце точки, поставленные на местах, соответствующих абсолютному количеству того или иного вида лейкоцитов, получаем ломаную линию, которая и представляет собой лейкоцитарный профиль.

Рис. 1. Лейкоцитарный профиль: 1 — в норме; 2 — при затяжной малярии, характеризующейся профилем с усеченной вершиной нейтрофилов; В — базофилы; Э — эозинофилы; Н — нейтрофилы; Л — лимфоциты; М — моноциты. Прямоугольниками отмечены границы нормы для абсолютных количеств данного вида лейкоцитов.

В норме все точки попадают внутрь прямоугольников. Выхождение какой-либо точки профиля за пределы границ нормы указывает на увеличение или уменьшение абсолютного количества данного вида лейкоцитов. Нормальный лейкоцитарный профиль у взрослого —  остроконечный, с наивысшей точкой в столбце нейтрофилов и крутым спуском к столбцу лимфоцитов. По лейкоцитарному профилю можно установить истинную функциональную гиперплазию тех или иных отделов кроветворного аппарата. Для более полной характеристики возрастного состава нейтрофилов Ш. Д. Мошковский предлагает выражать их средний возрастной состав дробью, в которой числитель — сумма процентов миелоцитов (М), метамиелоцитов (Ю) и палочкоядерных (П), а знаменатель — суммарный процент всех нейтрофилов (Н): [М + Ю + П] /H В норме этот ядерный индекс равен 0,05. При нарастании суммарного процента молодых нейтрофилов (М, Ю, П), например до 40, ядерный индекс может дойти до 0,5. См. также Лейкоциты.     

Нейтрофилы имеют несколько подвидов, в зависимости от степени зрелости. Различают их при микроскопии и подсчетелейкоцитарной формулы.

Виды нейтрофилов:

- юные нейтрофилы — самая молодая форма, в крови появляются редко, только при наличии воспаления;

- палочкоядерные нейтрофилы — имеют большое ядро в виде буквы С, S или Z;

- сегментноядерные нейтрофилы — ядро имеет от 3 до 7 сегментов, разделенных тонкими перетяжками.

Нарушения нормального соотношения нейтрофилов бывают нескольких видов.

Ядерный сдвиг нейтрофилов влево — состояние, когда в крови появляется много молодых, а именно юных и палочкоядерных нейтрофилов, а также появляются дегенеративные формы нейтрофилов. Такое состояние обычно характерно для:

- интоксикаций;

- инфекционных заболеваний;

- воспалительных процессов;

- злокачественных опухолей.

При этом различают два вида сдвига нейтрофилов влево — регенеративный и дегенеративный.

Регенеративный сдвиг нейтрофилов — это значит, что увеличивается количество палочкоядерных и юных нейтрофилов на фоне лейкоцитоза. Это говорит о повышенной деятельности костного мозга, который, как известно, является органом кроветворения. Такое состояние организма характерно для гнойно-септических и воспалительных процессов (пневмония, аппендицит).

При дегенеративном сдвиге увеличивается количество только палочкоядерных нейтрофилов; при этом появляются дегенеративные изменения в клетках. Это говорит о том, что функция кроветворения (костного мозга) угнетена.

Если одновременно у больного наблюдается лейкоцитоз — повышение количества лейкоцитов, то у него может быть:

- токсическая дизентерия;

- острый перитонит;

сальмонеллез;

- уремическая или диабетическая кома.

Дегенеративный сдвиг нейтрофилов на фоне лейкопении говорит о развитии:

- лимфопаратифозных заболеваний;

- вирусных инфекций.

Существует еще одна форма ядерного сдвига нейтрофилов влево, при которой в крови появляются незрелые формы лейкоцитов (миелоцитов, промиелоцитов или даже их предшественников — миелобластов). Все это происходит на фоне резкого лейкоцитоза. Такой сдвиг формулы крови говорит о вероятном наличии:

туберкулеза;

- злокачественных опухолей (рак желудкатолстой кишкимолочной железы);

- инфекционного заболевания.

Специалистам известна формула вычисления тяжести заболевания по соотношению лейкоцитов (нейтрофилов) в организме, поскольку каждый вид выполняет свои функции. Отношение молодых форм нейтрофилов к зрелым составляет величину, называемую «индексом сдвига».

Этот индекс рассчитывается по формуле:

индекс сдвига нейтрофилов = (М + Ю + П) / С,

в которой М — количество миелоцитов, Ю — количество юных нейтрофилов, П — количество палочкоядерных нейтрофилов, С — количество сегментированных нейтрофилов.

Нормальный индекс сдвига нейтрофилов выражается в величинах 0,05—0,08. Его изменение в ту или иную сторону указывает на степень тяжести болезни:

• при индексе 1,0 и более — тяжелая степень;

• в пределах 0,3— 1,0 — болезнь средней степени тяжести;

• при индексе 0,3 и меньше — степень заболевания легкая.

Ядерный сдвиг нейтрофилов вправо — состояние крови, когда в ней преобладают нейтрофилы зрелых форм, содержащие вместо трех сегментов пять или шесть. В таких случаях индекс сдвига становится меньше нижней границы нормы — менее 0,04.

Ради справедливости следует сразу сказать, что ядерный сдвиг нейтрофилов вправо встречается у пятой части практически здорового населения. Однако в ряде случаев он может быть признаком аномалий, в частности ситуация требует дальнейшей проверки из-за подозрения на наличие:

лучевой болезни;

- полицетемии и эритремии;

В12-дефицитной анемии (аддисонобирмеровской анемии).

Если ядерный сдвиг нейтрофилов вправо обнаруживается в период инфекционного или воспалительного заболевания, это является хорошим признаком: организм человека активно борется и велика вероятность скорого и благополучного выздоровления.

МЕТОДЫ ОПРЕДЕЛЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ

В практике клинико-диагностических лабораторий (КДЛ) применяются следующие методы определения СОЭ:

1. метод Панченкова;

2. метод Вестергрена и его модификации;

3. метод измерения кинетики агрегации эритроцитов.

У нас в стране широкое распространение получил метод Панченкова [1]. В этом методе используется стандартный стеклянный капилляр длиной 172 мм, наружным диаметром 5 мм и диаметром отверстия – 1,0 мм. Он имеет четкую коричневую градуировку от 0 до 10 см, шаг шкалы – 1,0 мм, верхнее деление шкалы отмечено «0» и буквой «К» (кровь), напротив деления 50 имеется буква «Р» (реактив).

Методика определения СОЭ методом Панченкова включает следующие этапы:

1. подготовить 5% раствор натрия цитрата и внести на часовое стекло;

2. промыть капилляр 5% раствором натрия цитрата;

3. произвести забор капиллярной крови в промытый капилляр;

4. перенести кровь из капилляра на часовое стекло;

5. повторить шаги 3 и 4;

6. перемешать кровь с натрия цитратом на часовом стекле и вновь заполнить капилляр;

7. установить капил ляр в штатив Панченкова и включить таймер для каждого капилляра отдельно;

8. через 1 ч определить СОЭ по высоте столба прозрачной плазмы.

Метод Панченкова имеет ряд принципиальных недостатков обусловленных плохой стандартизацией производимых промышленностью капилляров, необходимостью использовать для анализа только капиллярную кровь, а также невозможностью адекватно отмыть капилляр при многократном применении. В последние годы метод Панченкова стал применяться для определения СОЭ венозной крови, не смотря на то, что никаких научно-практических исследований по референтным величинам для этого метода, по изучению влияния различных факторов при исследовании венозной крови проведено не было. Поэтому метод Панченкова в настоящее время является источником ошибочных результатов и проблем в работе КДЛ и деятельности врачей-клиницистов, не используется в других странах (кроме стран бывшего СССР) и должен быть исключен из практики лабораторий.

Наиболее широкое распространение в развитых странах мира для определения СОЭ получил метод Вестергрена, который с 1977 года рекомендован Международным Советом по Стандартизации в Гематологии для применения в клинической практике [9]. В классическом методе Вестергрена используют стандартные капилляры из стекла или пластика длиной 300 мм ± 1,5 мм (рабочей является длина капилляра 200 мм), диаметром – 2,55 мм ± 0,15 мм, что повышает чувствительность метода. Время измерения – 1 ч. Для анализа может быть использована как венозная, так и капиллярная кровь. Методика определения СОЭ методом Вестергрена включает следующие этапы:

1. венозная кровь берется в вакуумные пробирки с К-ЭДТА (капиллярная кровь берется в пробирки с К-ЭДТА);

2. пробу венозной (капиллярной) крови смешать с 5% раствором натрия цитрата в соотношении 4:1;

3. произвести забор крови в капилляр Вестергрена;

4. через 1 ч измерить СОЭ по высоте столба прозрачной плазмы.

Метод Вестергрена в настоящее 41 время полностью автоматизирован, что существенно повышает производительность КДЛ и качество результатов. Вместе с тем, необходимо понимать, что классический метод Вестергрена имеет целый ряд модификаций, сущность которых состоит в уменьшении длины капилляра (например, используются моноветты или вакуумные пробирки с раствором натрия цитрата рабочая длина которых составляет 120 мм, а не 200 мм, как в классическом методе Вестергрена), изменении угла установки капилляра (например, ряд фирм использует установку вакуумных пробирок под углом 18°), укорочении времени для наблюдения за оседанием эритроцитов (до 30–18 мин) или сочетании этих изменений. Насколько такие модификации можно называть методом Вестергрена в научной литературе не решен.

На результаты определения СОЭ методом Панченкова и классическим методом Вестергрена могут оказывать существенное влияние ряд факторов преаналитического и аналитического этапов (не связанных с заболеванием пациента) производства лабораторных анализов:

• температура в помещении где проводится анализ (повышение температуры в помещении на 1 °С увеличивает СОЭ на 3%);

• время хранения пробы (не более 4 ч при комнатной температуре);

• используемый антикоагулянт (рекомендован цитрат натрия);

• правильная вертикальность установки капилляра;

• длина капилляра;

• внутренний диаметр капилляра;

• степень разведения крови антикоагулянтом (рекомендуемое разведение 4:1);

• величина гематокрита.

Низкие значения гематокрита (?35%) могут вносить искажения в результаты определения СОЭ. Для получения правильного результата необходим пересчет по формуле Фабри (T.L. Fabry) [5]: 

(СОЭ по Вестергрену · 15)/ (55 – гематокрит).

Кроме того, для получения адекватных результатов СОЭ этих методов важно правильно учитывать временные затраты, которые возникают при их практическом выполнении в лаборатории. Так, общее количество времени, затрачиваемое на постановку одной пробы СОЭ, составляет 25–30 с. Если в КДЛ лаборант одновременно ставит 10 проб СОЭ, то временные затраты от первой пробы до последней составят 250–300 с (4 мин 10 с – 5 мин).

Если не учитывать эти временные затраты, то можно получить неправильные результаты исследования, так как СОЭ между 60 и 66 мин (время «остановки» СОЭ) может измениться на 10 мм. Большим недостатком метода Вестергрена является отсутствие возможности осуществлять внутрилабораторный контроль качества.

Данные многих публикаций свидетельствуют о том, что такой контроль в отношении метода Вестергрена является объективной необходимостью. Результаты исследования параллельно тестируемых проб, проведенные Национальной академией клинической биохимии и стандартизации США показали достаточно высокую аналитическую вариацию для определения СОЭ методом Вестергрена – 18,99% [9].

Учитывая все эти недостатки метода Вестергрена, компанией Alifax в 90-е годы был разработан и предложен для использования в клинической практике для определения СОЭ – метод измерения кинетики агрегации эритроцитов. Метод по своей технологии коренным образом отличается от метода Вестергрена, так как определяет агрегационную способность эритроцитов с помощью измерения оптической плотности [10]. Теоретическим основанием данного метода определения СОЭ для его использования в клинической практике служит агрегационная модель оседания эритроцитов, объясняющая этот процесс образованием агрегатов эритроцитов при адсорбции на них макромолекул, способствующих их адгезии, и оседанием агрегатов в соответствии с законом Стокса.

Согласно данному закону, частица, плотность которой превышает плотность среды, оседает под действием силы тяжести с постоянной скоростью. Cкорость оседания пропорциональна квадрату радиуса частицы, разнице ее плотности и плотности среды, и обратно пропорциональна вязкости среды [3]. Сущность новой технологии определения СОЭ, разработанной компанией Alifax, представлена на рис. 2.

Рисунок 2. Измерение кинетики агрегации эритроцитов.

Каждая проба крови измеряется 1000 раз за 20 секунд. Оптическая плотность автоматически переводится в мм/ч. Измерение агрегации эритроцитов осуществляется автоматически в микрокапилляре анализатора СОЭ, который моделирует кровеносный сосуд. При заборе крови у пациента для определения СОЭ в качестве антикоагулянта используется ЭДТА, что позволяет для анализа использовать пробу крови, взятую для исследования на гематологическом анализаторе (определения основных показателей общеклинического анализа крови).

Корреляция данной технологии с классическим методом Вестергрена составляет 94–99% [4, 8, 11]. Кроме того, при определении СОЭ с использованием ЭДТА стабильность крови увеличивается до 48 ч при температуре хранения 4 °С. 

Объектом исследования для анализаторов компании Alifax может быть венозная и капиллярная кровь. Анализаторы компании Alifax поддерживают постоянную физиологическую температуру (37°C) в отсеке для загрузки проб с помощью термостата. Благодаря этому, обеспечивается стабильность результатов исследований вне зависимости от внешней температуры. Низкий уровень гематокрита (?35%) не оказывает влияние на результаты анализа. Нет необходимости использовать формулу Фабри для пересчета полученных значений с поправкой на гематокрит. Более того, анализаторы дополнительно отмечают результаты с низким гематокритом звездочкой (*) [8].

Анализаторы компании Alifax измеряют кинетику агрегации эритроцитов, благодаря этому, данная методика способна устранить влияние факторов преаналитического и аналитического этапов, присущие классическому методу Вестергрена, основанном на оседании [11].

Для калибровки анализаторов компании Alifax и проведения регулярного контроля качества используются специальные латексные частицы. Наборы латексных контролей трех уровней выпускаются готовыми к использованию – низкий (3–6 мм/ч), средний (23–33 мм/ч) и высокий (60–80 мм/ч) [4].

На основании исследования контрольных материалов строится карта Леви-Дженнингса, а результаты регулярного внутрилабораторного контроля качества оценивают согласно правилам Westgard.

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ СКОРОСТЬ ОСЕДАНИЯ ЭРИТРОЦИТОВ

Скорость, с которой оседают эритроциты, представляет собой феномен, который зависит от целого ряда факторов. Понимание роли этих факторов имеет прямое отношение к той диагностической информации, которую представляет определение СОЭ.

В первую очередь, эритроциты опускаются на дно капилляра, так как имеют большую плотность, чем плазма, в которой они взвешены (удельная плотность эритроцитов 1096 кг/м3, удельная плотность плазмы 1027 кг/м3) [3]. Во вторых, эритроциты несут на своей поверхности отрицательный заряд, который определяют белки, связанные с их мебраной. В результате у здоровых людей эритроциты падают вниз каждый сам по себе, так как отрицательный заряд способствует их взаимному отталкиванию. Если по какой-либо причине эритроциты перестают отталкиваться друг от друга, то происходит их агрегация с формированием «монетных столбиков». Образование монетных столбиков и агрегация эритроцитов, увеличивая массу оседающих частиц, ускоряет оседание. Именно этот феномен встречается при многих патологических процессах, сопровождающихся ускорением СОЭ.

Основным фактором, влияющим на образование монетных столбиков из эритроцитов, является белковый состав плазмы крови. Все белковые молекулы снижают отрицательный заряд эритроцитов, способствующий поддержанию их во взвешенном состоянии, но наибольшее влияние оказывают асимметричные молекулы – фибриноген, иммуноглобулины, а также гаптоглобин. Повышение концентрации в плазме крови этих белков, способствует повышению агрегации эритроцитов. Очевидно, что и заболевания, связанные с увеличением уровня фибриногена, иммуноглобулинов и гаптоглобина, будут сопровождаться ускорением СОЭ. На отрицательный заряд эритроцитов влияют и другие факторы: рН плазмы (ацидоз снижает СОЭ, алкалоз повышает), ионный заряд плазмы, липиды, вязкость крови, наличие антиэритроцитарных антител.

Число, форма и размер эритроцитов также влияют на величину СОЭ. Эритропения ускоряет оседание, однако при выраженной серповидности, сфероцитозе, анизоцитозе скорость оседания может быть низкой (форма клеток препятствует образованию монетных столбиков). Повышение количества эритроцитов в крови (эритремия) снижает СОЭ. Референтные величины СОЭ приведены в табл. 1 [2].

Таблица 1. Референтные величины СОЭ по Вестергрену Возраст СОЭ, мм/ч.

Возраст

СОЭ, мм/ч

Новорожденные

0–2

Младенцы (до 6 мес.)

12–17

Дети до 17 лет

2–10

Женщины (моложе 60 лет) 

2–20

Женщины (старше 60 лет)

2–30

Мужчины (моложе 60 лет) 

2–15

Мужчины (старше 60 лет)

2–20

 

Величины СОЭ постепенно повышаются с возрастом: примерно на 0,8 мм/ч каждые пять лет. У беременных женщин СОЭ обычно повышена, начиная с 4-го месяца беременности, к ее концу достигает пика – 40–50 мм/ч, и возвращается к норме после родов. Необходимо констатировать, что попытки адаптировать референтные величины СОЭ для метода Вестергрена и метода Панченкова нельзя считать научно-обоснованными.

Величина СОЭ не является специфическим показателем для какоголибо определенного заболевания. Однако нередко при патологии ее изменения имеют диагностическое и прогностическое значение и могут служить показателем эффективности проводимой терапии.

ПРИЧИНЫ ПОВЫШЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ

Наряду с повышением температуры тела и величины пульса ускорение СОЭ встречается при многих заболеваниях. Изменение состава белков плазмы и их концентрации, которые являются основной причиной повышения СОЭ, – признак любого заболевания, связанного со значительным повреждением тканей, воспалением, инфекцией или злокачественной опухолью. Не смотря на то, что в ряде случаев СОЭ при этих состояниях может оставаться в пределах нормы, в целом, чем выше СОЭ, тем больше вероятность наличия у больного повреждения тканей, воспалительного, инфекционного или онкологического заболевания. Наряду с лейкоцитозом и соответствующими изменениями лейкоцитарной формулы, повышение СОЭ служит достоверным признаком наличия в организме инфекционных и воспалительных процессов. В остром периоде при прогрессировании инфекционного процесса происходит увеличение СОЭ, в период выздоровления СОЭ замедляется, но несколько медленнее в сравнении со скоростью уменьшения лейкоцитарной реакции.

Воспалительные заболевания.

Любой воспалительный процесс в организме сопровождается повышенным синтезом белков плазмы (белки «острой фазы»), включая фибриноген, что способствует формированию монетных столбиков из эритроцитов и ускорению СОЭ. Поэтому определение СОЭ широко использую в клинической практике для подтверждения воспаления при диагностике таких хронических заболеваний, как ревматоидный артрит, болезнь Крона, язвенный колит. Измерение СОЭ позволяет определить стадию заболевания (обострение или ремиссия), оценить его активность и эффективность лечения. Повышение СОЭ указывает на активный воспалительный процесс у больного и, следовательно, отсутствие реакции на проводимую терапию. Наоборот, снижение СОЭ свидетельствует о стихании воспаления в ответ на лечение. Нормальная СОЭ в большинстве случаев исключает наличие воспалительного процесса.

Инфекционные заболевания. 

При всех инфекционных заболеваниях иммунная система реагирует повышением продукции антител (иммуноглобулинов). Повышенная концентрация иммуноглобулинов в крови – одна из причин, увеличивающих склонность эритроцитов к агрегации и образованию монетных столбиков. Поэтому все инфекционные заболевания могут сопровождаться ускорением СОЭ. При этом бактериальные инфекции чаще, чем вирусные проявляются повышением СОЭ. Особенно высокое СОЭ наблюдается при хронических инфекциях (подострый бактериальный эндокардит). Повторные исследования СОЭ позволяют оценить динамику течения инфекци-

онного процесса и эффективность лечения.

Онкологические заболевания.

Большинство больных с различными формами злокачественных опухолей имеют повышенную СОЭ. Однако повышение отмечается не у всех пациентов, поэтому измерение СОЭ не используют для диагностики онкологических заболеваний. Но в отсутствие воспалительного или инфекционного заболевания значительное повышение СОЭ (выше 75 мм/ч) должно вызвать настороженность в отношении наличия злокачественной

опухоли.

Особенно выраженное ускорение СОЭ (60–80 мм/ч) характерно для парапротеинемических гемобластозов (миеломная болезнь, болезнь Вальденстрема). Миеломная болезнь – злокачественное заболевание костного мозга с неконтролируемой пролиферацией плазматических клеток, вызывающей разрушение костей и боли в костях. Атипичные плазматические клетки синтезируют огромное количество патологических иммуноглобулинов (парапротеинов), в ущерб нормальных антител. Парапротеины усиливают образование монетных столбиков эритроцитов и повышают СОЭ.

Ускорение СОЭ наблюдается почти у всех больных при злокачественном заболевании лимфатических узлов – болезни Ходжкина. Повреждение тканей. Ряд заболеваний, при которых происходит повреждение тканей, сопровождаются ускорением СОЭ. Например, инфаркт миокарда вызывает повреждение миокарда. Последующий воспалительный ответ на это повреждение включает синтез белков «острой фазы» (в том числе фибриногена), что усиливает агрегацию эритроцитов и увеличивает СОЭ. Аналогичная ситуация возникает при остром деструктивном панкреатите.

Уровень повышения СОЭ и частота изменения этого показателя у пациентов с различными заболеваниями представлены на рис. 3 [7]

Чувствительность и специфичность СОЭ для выявления патологии при различных порогах принятия решения представлены на рис. 4 [7].

ПРИЧИНЫ СНИЖЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ

Снижение СОЭ встречается в клинической практике значительно реже и не имеет большого клинического значения. Наиболее часто снижение СОЭ выявляют при эритремии и реактивных эритроцитозах (вследствие увеличения количества эритроцитов), выраженной недостаточности кровообращения, серповидно-клеточной анемии (форма клеток препятствует образованию монетных столбиков), механической желтухе (предположительно связано с накоплением в крови желчных кислот). 

В заключение необходимо заметить, что, несмотря на широкое применение в клинической практике, определение СОЭ имеет ограниченное диагностическое значение. Вместе с тем, большинство авторитетных экспертов в области клинической медицины, однозначно указываю на то, что диагностические возможности этого метода используются далеко не полностью, и основная проблема для практики отечественных КДЛ лежит в плоскости методических особенностей постановки теста.

Гематокрит — это соотношение между объемом форменных элементов крови, в основном эритроцитов, и объемом плазмы.

Метод определения гематокрита основан на разделении плазмы и эритроцитов с помощью центрифугирования. Определение производят в гематокритной трубке, представляющей собой стеклянную пипетку, разделенную на 100 равных частей.

Перед взятием крови гематокритную трубку промывают раствором гепарина или щавелевокислых солей. Затем набирают в трубку капиллярную кровь до отметки «100», закрывают резиновым колпачком и центрифугируют в течение 1—1,5 часа при 1,5 тысячи оборотов в минуту. После этого отмечают, какую часть в градуированной трубке составляют эритроциты, это и есть гематокрит.

Гематокритную величину определяют с помощью отсчетной шкалы, прилагаемой к центрифуге. В норме объем массы эритроцитов меньше объема плазмы.

Гематокрит у женщин составляет 36—42 %, у мужчин — 40—48 %.

Увеличение гематокрита наблюдается при эритремии, повышении количества эритроцитов, и обезвоживании организма, уменьшение гематокрита наблюдают прианемиях.

Величиной гематокрита пользуются для расчета массы эритроцитов, циркулирующих в крови, и некоторых других показателей крови, например средней процентной концентрации гемоглобина в одном эритроците и среднего объема одного эритроцита.

Практически средний объем одного эритроцита определяют по формулам:

1. величину гематокрита в объемных процентах умножают на 10, затем делят на число миллионов эритроцитов в 1 мкл крови;

2. величину гематокрита, умноженную на 100, затем также делят на число миллионов эритроцитов в 1 мкл крови.

Рефрактометрический способ основан на способности растворов белка к преломлению светового потока. При температуре 17,5 °С показатель преломления воды равен 1,3332, при той же температуре показатель преломления сыворотки колеблется в пределах 1,3480–1,3505. В связи с тем, что концентрация электролитов и небелковых органических соединений, влияющих на ее преломляющую способность, невелика и достаточно постоянна в сыворотке, величина показателя преломления сыворотки крови зависит в первую очередь от содержания в ней белков. Калибровку прибора проводят сывороткой с известной концентрацией белка. Простота делает рефрактометрию удобным методом для определения содержания белка в сыворотке крови.

     Однако, на показатель преломления влияют небелковые компоненты сыворотки крови, например минеральные вещества, пигменты, углеводы, липиды, фракции остаточного азота. При некоторых патологических состояниях их содержание увеличивается, что приводит к значительным ошибкам в определении. Это касается исследования желтушных и хилезных сывороток, а также сывороток больных сахарным диабетом и страдающих уремией.

Норма 65-85 г/л у взрослых

Если повышен уровень общего белка крови, это явления достаточно редкое, потому как его причины возникновения достаточно серьезные.

Когда повышен белок крови у взрослых и детей, существуют такие причины:

  • Ревматоидный артрит, ревматизм;

  • Различные инфекционные поражения;

  • Острые кровотечения.

Белок крови может быть повышен у детей при диарее, рвоте, как следствие кишечной непроходимости, а также при холере и обширных ожогах.

Также белок может быть повышен при достаточно серьезных причинах:

  • Злокачественные опухоли;

  • Сепсис;

  • Хроническое течение воспалительных и инфекционных процессов, когда белок поступает из разрушенных тканей.

Белок может быть понижен из-за ряда распространенных причин. Гипопротеинемия может быть относительной, либо абсолютной, первая встречается преимущественно у людей принимающих достаточно много воды, тогда происходит «водной отравление».

Белок может быть абсолютно понижен при многих факторах:

  • При соблюдении диет, голодании, которые обусловлены небольшим поступлением белка в организм человека;

  • При болезнях печени: цирроз, холецистит, гепатит, карциномы. Заболевание печени приводит к снижению выработки желчи, как следствие усвоение протеинов может быть понижено;

  • Белок может быть понижен при высоких физических нагрузках, в которые не вносятся необходимые коррективы по рациону;

  • При заболеваниях почек, когда белок выводится вместе с мочой – нефроз, пиелонефрит;

  • Гастрит и другие заболевания, которые способны снизить потребление белковой пищи;

  • Белок может быть повышен, либо понижен не в качестве специфического признака каких-то заболеваний, это скорее дает возможность судить о наличии у человека острых патологических и хронических процессов, которые происходят в организме.

Определение времени рекальцификации плазмы при постгеморрагической анемии.

Методика: В пробирку, находящуюся в водяной бане при температуре 37˚С, ввести 0,2 мл 0,227% раствора хлорида кальция и 0,1 мл 0,85 % раствора хлорида натрия. Через 1 мин добавить 0,1 мл испытываемой плазмы, немедленно включить секундомер и заметить время образования сгустка фибрина. Исследование повторяют 2-3 раза и вычисляют средний результат. Нормальные величины: 60-120 с.

Удлинение времени – тяжелое течение инфекционных заболеваний, ожоги, лейкозы, поздние стадии ДВС синдрома, гемофилия, поражения печени, отравления фосфором, неправильная терапия антиагрегантами

Укорочение времени кровотечения – последствия кровопотери, микседема, анафилактический шок, ранние стадии ДВС синдрома

Определение протромбинового времени методом Квика.

Методика. В пробирку налить 0,1 мл испытуемой плазмы, 0,1 мл суспензии тромбопластина и погрузить в водяную баню при 37—38ºС. Через 1 мин туда же добавить 0,1 мл 0,277% раствора хлористого кальция, включить секундомер и отметить время образования сгустка. Исследование повторяют и вычисляют средний результат.

Определение протромбинового времени — это определение времени от момента внесения плазмы крови до появления хлопьев фибрина.

Протромбиновое время здорового кролика, определенное этим методом при разведении крови 1:4 (1 мл оксалата натрия — 4 мл крови), равно 12-20 с (в зависимости от активности тромбина).

Норма 11-15 секунд

Увеличение – болезни печени, дефицит витамина К, внутрисосудистое свертывание, наследственный дефицит факторов свертывания – II (протромбин), V,VII,X, снижение уровня фибриногена или его отсутствие, наличие противосвертывающих препаратов

Уменьшение – тромбоз, активация фибринолиза, повышение активности фактора VII

Схема постановки реакции и получения концентрация гипотонического раствора хлорида натрия.

препарат, мл

номер пробирки

1

2

3

4

5

6

7

8

9

1% хлорид натрия

4,0

3,5

3,0

2,5

2,0

1,5

1,0

0,5

-

дист. вода

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

полученная концентрация в %

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

-

В каждую пробирку добавить по 2—3 капли крови. Определить через 1 ч начало и окончание гемолиза. Объяснить механизм нарушения осмотической резистентности эритроцитов при постгеморрагической анемии.

Резистентность эритроцитов - способность их противостоять различным разрушительным воздействиям: осмотическим, механическим, химическим, физическим.

В гипертонических растворах эритроциты теряют воду и сморщиваются, а в гипотонических - поглощают воду и набухают. При значительном набухании происходит гемолиз. Изотоническим раствором для эритроцитов является 0,85%-ный раствор хлорида натрия. В 0,48-0,44%-ных растворах NaCl разрушаются наименее резистентные эритроциты (минимальная осмотическая резистентность, верхняя граница резистентности). При концентрации 0,32-0,28% полностью гемолизируются все эритроциты (максимальная осмотическая резистентность, нижняя граница резистентности).

Уменьшение осмотической резистентности эритроцитов (повышение показателей минимальной и максимальной резистентности) наблюдается при гемолитической болезни новорожденных и наследственном микросфероцитозе, а также (в слабой степени выраженности) при токсикозах, бронхопневмониях, гемобластозах, циррозах печени и др. Увеличение осмотической резистентности эритроцитов имеет место при некоторых случаях полицитемии и железодефицитной анемии, а также при гемоглобинозе S и после массивных кровопотерь.

Одним из проявлений нарушения функции ЖКТ является изменение секреции. В зависимости от особенностей изменения секреторной функции желудка выделяют несколько ее типов: тормозной, возбудимый, инертный, астенический.

Тормозной тип. Увеличенный латентный период секреции (между пищевой стимуляцией желудка и началом секреции), сниженная интенсивность нарастании и активности секреции, укороченная длительность секреции, уменьшенный объем секрета. При крайней степени торможения секреции развивается ахилия — практическое отсутствие желудочного сока.

Возбудимый тип. Укороченный латентный период начала секреции, интенсивное нарастание секреции, увеличенная длительность процесса секреции, повышеный объём желудочного сока.

Инертный тип. Увеличенный латентный период, замедленное нарастание секреции, увеличеный объём желудочного сока.

Астенический тип. Укороченный латентный период начала сокоотделения, интенсивное начало и быстрое снижение секреции, малый объём желудочного сока.

Хаотический тип. Характерно отсутствие каких-либо закономерностей динамики и объёмов секреции, периодов её активации и торможения в течение продолжительного времени (нескольких месяцев и лет). Общее количество сока, как правило, увеличено.

Определение в моче патологических компонентов при заболеваниях почек.

Методика: В каждой из четырех порций мочи последовательно определить содержание глюкозы, белка, кровяных и желчных пигментов.

Определение глюкозы в моче.

В пробирку налить 6-8 мл мочи, добавить 20 капель реактива Гайнеса, и содержимое поместить в водяную баню с кипящей водой. При наличии глюкозы в моче содержимое окрасится в желтый цвет.

Норма 0,1-,8 ммоль/л

Повышение: гипергликемия, нарушение канальцевой реабсорбции

Определение белка в моче.

В 2 пробирки налить по 3 мл мочи. В опытную пробирку добавить 6-8 капель 20% раствора сульфасалициловой кислоты. На темном фоне сравнивают контрольную пробирку с опытной. При наличии белка в опытной пробирке появится помутнение.

Норма менее 0,14 г/л

Присутствие: гломерулонефрит, диабетическое поражение почек, ЗНО мочевыводящих путей, миеломная болезнь, отравление тяжелыми металлами, нефросклероз, нефротический синдром, цистит, уретрит и др инфекции

Определение крови и кровяных пигментов в моче.

В пробирку налить 5 мл мочи и добавить несколько капель щелочи. Содержимое пробирки подвергнуть кипячению. При наличии крови и кровяных пигментов появится осадок грязно-белого цвета, постепенно приобретающий коричневую окраску.

Гемоглобин в моче: ожоги, сепсис, гемолитическая анемия, отравления

Миоглобин в моче: ИМ, повреждения мышц, миопатии, тяжелая физическая нагрузка