Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лк4 Ethernet.doc
Скачиваний:
46
Добавлен:
10.02.2016
Размер:
420.35 Кб
Скачать

24

Лекция 4

4.1 Стандарты технологии Ethernet

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле, Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году (еще до появления персонального компьютера). Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля. Поэтому стандарт Ethernet иногда называют стандартом DIX по заглавным буквам названий фирм.

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Все виды стандартов Ethernet (Ethernet, Fast- Ethernet, Gigabit- Ethernet ) используют метод разделения среды передачи данных - метод CSMA/CD.

4.2 Метод csma/cd

Протокол множественного случайного доступа к среде с разрешением коллизий CSMA/CD определяет характер взаимодействия рабочих станций в сети с единой общей для всех устройств средой передачи данных. Все станции имеют равноправные условия по передаче данных. Нет определенной последовательности, в соответствии с которой станции могут получать доступ к среде для осуществления передачи. Именно в этом смысле доступ к среде осуществляется случайным образом. Реализация алгоритмов случайного доступа представляется значительно более простой задачей, чем реализация алгоритмов детерминированного доступа. Поскольку в последнем случае требуется или специальный протокол, контролирующий работу всех устройств сети (например протокол обращения маркера, свойственный сетям Token Ring и FDDI), или специальное выделенное устройство - мастер концентратор, который в определенной последовательности предоставлял бы всем остальным станция возможность передавать (сети Arcnet, 100VG AnyLAN).

Однако сеть со случайным доступом имеет один пожалуй главный недостаток - это не совсем устойчивая работа сети при большой загруженности, когда может проходить достаточно большое время, прежде чем данной станции удается передать данные. Виной тому коллизии, которые возникают между станциями, начавшими передачу одновременно или почти одновременно. При возникновении коллизии передаваемые данные не доходят до получателей, а передающим станциям приходится повторно возобновлять передачу. Дадим определение:

множество всех станций сети, одновременная (или почти одновременная) передача любой пары из которых приводит к коллизии, называется коллизионным доменом (collision domain).

Из-за коллизии могут возникать непредсказуемые задержки при распространении кадров по сети, особенно при большой загруженности сети (много станций , > 20-25, пытаются одновременно передавать внутри коллизионного домена,) и при большом диаметре коллизионного домена (> 2 км). Поэтому при построении сетей желательно избегать таких экстремальных режимов работы.

Протокол CSMA/CD содержит важный элемент - разрешение коллизий. Поскольку коллизия разрушает все передаваемые в момент ее образования кадры, то и нет смысла станциям продолжать дальнейшую передачу своих кадров, коль скоро они (станции) обнаружили коллизии. В противном случае, значительной была бы потеря времени при передаче длинных кадров. Поэтому для своевременного обнаружения коллизии станция прослушивает среду на всем протяжении собственной передачи. Приведем основные правила алгоритма CSMA/CD для передающей станции.

Передача кадра (рис.1а):

  1. Станция, собравшаяся передавать, прослушивает среду. И передает, если среда свободна. В противном случае (т.е. если среда занята) переходит к шагу 2. При передаче нескольких кадров подряд станция выдерживает определенную паузу между посылками кадров - межкадровый интервал, причем после каждой такой паузы, перед отправкой следующего кадра станция вновь прослушивает среду (возвращение на начало шага 1);

  2. Если среда занята, станция продолжает прослушивать среду до тех пор, пока среда не станет свободной, и затем сразу же начинает передачу;

  3. Каждая станция, ведущая передачу, прослушивает среду, и в случае обнаружения коллизии, не прекращает сразу же передачу, а сначала передает короткий специальный сигнал коллизии - jam-сигнал, информируя другие станции о коллизии, и прекращает передачу;

  4. После передачи jam-сигнала станция замолкает и ждет некоторое произвольное время в соответствии с правилом бинарной экспоненциальной задержки и затем возвращается к шагу 1.

Рис.1а Структурная схема алгоритма CSMA/CD (уровень MAC): при передаче кадра станцией

Межкадровый интервал (IFG) составляет 9,6 мкс (12 байт). С одной стороны он необходим для того, чтобы принимающая станция могла корректно завершить прием кадра. Кроме этого, если бы станция передавала кадры непрерывно, она бы полностью захватила среду и тем самым лишила другие станции возможности передачи.

Jam-сигнал (jamming - дословно глушение). Передача jam-сигнала гарантирует, что ни один кадр не будет потерян, так как все узлы, которые передавали кадры до возникновения коллизии, приняв jam-сигнал, прервут свои передачи и замолкнут в преддверии новой попытки передать кадры. Jam-сигнал должен быть достаточной длины, чтобы он дошел до самых удаленных станций коллизионного домена, с учетом дополнительной задержки SF (safety margin) на возможных повторителях. Содержание jam-сигнала не принципиально за исключением того, что оно не должно соответствовать значению поля FCS частично переданного кадра (802.3), и первые 62 бита должны представлять чередование ‘1’ и ‘0’ со стартовым битом ‘1’.

Усеченная бинарная экспоненциальная задержка (truncated binary exponential backoff). При возникновения коллизии стация подсчитывает, сколько раз подряд при отправке пакета возникает коллизия. Поскольку повторяющиеся коллизии свидетельствуют о высокой загруженности среды, MAC-узел пытается увеличивать задержку между повторными попытками передачи кадра. Соответствующая процедура увеличения интервалов времени подчиняется правилу усеченной бинарной экспоненциальной задержки и работает следующим образом.

Количество слотовых времен (интервалов по 51,2 мкс), которое станция ждет перед тем как совершить N-ую попытку передачи (N-1 попыток потерпели фиаско из-за возникновения коллизий во время передачи) представляет случайное целое число с однородной функцией распределения в интервале, где, и BL (backoff limit) - установленная стандартом предельная задержка, равная 10. Если количество последовательных безуспешных попыток отправить кадр доходит до 16, то есть коллизия возникает 16 раз подряд, то кадр сбрасывается.

Алгоритм CSMA/CD с использованием усеченной бинарной экспоненциальной задержки признан лучшим среди множества алгоритмов случайного доступа и обеспечивает эффективную работу сети, как при малых, так и при средних загрузках. При больших загрузках следует отметить два недостатка. Во-первых, при большом числе коллизий станция 1, которая впервые собирается отправить кадр (до этого не пыталась передавать кадры), имеет преимущество перед станцией 2, которая уже несколько раз безуспешно пыталась передать кадр, натыкаясь на коллизии. Поскольку станция 2 ожидает значительное время пред последующими попытками в соответствии с правилом бинарной экспоненциальной задержки. Таким образом, может наблюдаться нерегулярность передачи кадров, что нежелательно для зависящих от времени приложений. Во-вторых, при большой загруженности снижается эффективность работы сети в целом. Оценки показывают, что при одновременной передаче 25 станций общая полоса пропускания снижается примерно в 2 раза. Но число станций в коллизионном домене может быть больше, поскольку далеко не все они одновременно будут обращаться к среде.

Прием кадра

Структурная схема алгоритма CSMA/CD при приеме кадра станцией представлена на рис.1б.

Принимающая станция или другое сетевое устройство, например, концентратор или коммутатор первым делом синхронизируется по преамбуле и затем преобразовывает манчестерский код в бинарную форму (на физическом уровне). Далее обрабатывается бинарный поток.

На уровне MAC оставшиеся биты преамбулы сбрасываются, а станция читает адрес назначения и сравнивает его со своим собственным. Если адреса совпадают, то поля кадра за исключением преамбулы и SFD помещаются в буфер и вычисляется контрольная сумма, которая сравнивается с данными в поле контрольной последовательности кадра FCS (используется метод циклического суммирования CRC-32). Если результат совпадает, то содержимое буфера передается протоколу более высокого уровня. В противном случае кадр сбрасывается. Возникновение коллизии при приеме кадра обнаруживается либо по изменению электрического потенциала, если используется коаксиальный сегмент, либо по факту приема дефектного кадра (неверная контрольная сумма), если используется витая пара или оптическое волокно. В обоих случая принятая информация сбрасывается.

Рис.1б Структурная схема алгоритма CSMA/CD (уровень MAC): при приеме кадра станцией

Обнаружение коллизии

На рис.2 проиллюстрирован процесс обнаружения коллизии применительно к топологии шина (на основе тонкого или толстого коаксиального кабеля (стандарты 10Base-5 и 10Base-2 соответственно).

В момент времени узелA начинает передачу, естественно прослушивая свой же передаваемый сигнал. В момент времени , когда кадр почти дошел узла B , этот узел, не зная о том, что уже идет передача, сам начинает передавать. В момент времени t2 узел B обнаруживает коллизию (увеличивается постоянная составляющая электрического сигнала в прослушиваемой линии). После этого узел B передает jam-сигнал и прекращает передачу. В момент времени сигнал коллизии доходит до узлаA, после чего A также передает jam-сигнал и прекращает передачу.

Рис.2 Обнаружение коллизии при использовании схемы CSMA/CD стандарта Ethernet

По стандарту Ethernet узел не может предавать очень короткие кадры, или иными словами вести очень короткие передачи. Как говорилось при описании формата кадра, даже если поле данных не заполнено до конца, то появляется специальное дополнительное поле, удлиняющее кадр до минимальной длины 64 байта без учета преамбулы. Время канала ST (slot time)- это минимальное время, в течении которого узел обязан вести передачу, занимать канал. Это время соответствует передаче кадра минимального допустимого размера, принятого стандартом Ethernet IEEE 802.3. Время канала связано с максимальным допустимым расстоянием между узлами сети - диаметром коллизионного домена. Допустим, что в приведенном выше примере реализуется наихудший сценарий, когда станции A и B удалены друг от друга на максимальное расстояние. Время, распространения сигнала от A до B обозначим через .

Узел A начинает передавать в нулевой момент времени.

Узел B начинает передавать в момент времени и обнаруживает коллизию в момент времени

t2= tp, спустя интервал после начала своей передачи.

Узел A обнаруживает коллизию в момент времени .

Для того, чтобы кадр, переданный A, не был потерян, необходимо, чтобы узел A не прекращал вести передачу к этому моменту, так как тогда, обнаружив коллизию, узел A будет знать, что его кадр не дошел, и попытается передавать его повторно. В противном случае кадр будет потерян.

Максимальное время, спустя которое с момента начала передачи узел A еще может обнаружить коллизию равно - это время называетсязадержкой на двойном пробеге RTD (round-trip delay). В более общем случае RTD определяет суммарную задержку, связанную как с задержкой из-за конечной длины сегментов, так и с задержкой, возникающей при обработке кадров на физическом уровне промежуточных повторителей и оконечных узлов сети. Для дальнейшего удобно использовать также другую единицу измерения времени: битовое время BT (bit time). Время в 1 BT соответствует времени, необходимому для передачи одного бита, т.е. 0,1 мкс при скорости 10 Мбит/с.

Стандартом Ethernet регламентированы следующие правила обнаружения коллизии конечным узлом сети :

  1. Узел A должен обнаружить коллизию до того, как передаст свой 512-й бит, включая биты преамбулы;

  2. Узел A должен прекратить передачу раньше, чем будет передан кадр минимальной длины - передано 576 бит (512 бит, начиная отсчет после ограничителя начала кадра SFD);

  3. Перекрытие между передачами узлов A и B - битовый интервал начиная с момента передачи первого бита преамбулы узлом A и заканчивая приемом узлом A последнего бита переданного узлом B - должно быть меньше чем 575 BT.

Последнее условие для сети Ethernet является наиболее важным, поскольку его выполнение автоматически влечет выполнение и первых двух. Это третье условие задает ограничение на диаметр сети. Применительно к задержке на двойном пробеге RTD третье условие можно сформулировать в виде: BT.

Формат кадров Ethernet

В 1980-м году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802.х. Оно содержит рекомендации по проектированию нижних уровней локальных сетей. Помимо IEEE в работе по стандартизации протоколов локальных сетей принимают участие и другие организации (ANSI, ETSI и др.).Стандарты семейства IEEE 802.х охватывают только два нижних уровня модели OSI – физический и канальный, т.к. именно эти два уровня в наибольшей степени отражают специфику работы локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня:

- управление логическим каналом (Logical Link Control, LLC)

- управление доступом к среде (Madia Access Control,MAC).

Уровень МАС появился из-за существования в локальных сетях разделяемой среды передачи. Именно этот уровень обеспечивает корректное совместное использование общей среды передачи. В современных локальных сетях получили распространение несколько протоколов уровня МАС, реализующие различные алгоритмы доступа к разделяемой среде, полностью определяющие специфику таких технологий как Ethernet, Fast- Ethernet, Gigabit-Ethernet, Token Ring, FDDI.

Подуровень LLC может пользоваться разделяемой средой, после того, как доступ к ней получен с помощью подуровня МАС. Он реализует функции интерфейса с прилегающим к нему сетевым уровнем. Подуровень LLC отвечает также за передачу данных с различной степенью надежности между узлами, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением виртуального соединения и восстановления кадров.

На рис.1 показан формат кадра Ethernet

Рис.1.

Два базовых MAC формата (raw formats) кадра Ethernet

. Поля имеют следующие назначения:

  • Преамбула: 7 байт, каждый из которых представляет чередование единиц и нулей 10101010. Преамбула позволяет установить битовую синхронизацию на приемной стороне.

  • Ограничитель начала кадра (SFD, start frame delimiter): 1 байт, последовательность 10101011, указывает, что далее последуют информационные поля кадра. Этот байт можно относить к преамбуле.

  • Адрес назначения (DA, destination address): 6 байт, указывает MAC-адрес станции (MAC-адреса станций), для которой (которых) предназначен этот кадр. Это может быть единственный физический адрес (unicast), групповой адрес (multicast) или широковещательный адрес (broadcast).

  • Адрес отправителя (SA, source address): 6 байт, указывает MAC-адрес станции, которая посылает кадр.

  • Поле типа или длины кадра (T or L, type or length): 2 байта. Существуют два базовых формата кадра Ethernet (это связано с длительной историей развития технологии Ethernet) - Ethernet_II и IEEE 802.3, причем различное назначение у них имеет именно рассматриваемое поле. Для кадра Ethernet_II в этом поле содержится информация о типе кадра. Ниже приведены значения в шестнадцатеричной системе этого поля для некоторых распространенных сетевых протоколов: 0x0800 для IP, 0x0806 для ARP, 0x809B для AppleTalk, 0x0600 для XNS, и 0x8137 для IPX/SPX. С указанием в этом поле конкретного значения (одного из перечисленных) кадр приобретает реальный формат, и в таком формате кадр уже может распространяться по сети. Для кадра IEEE 802.3 в этом поле содержится выраженный в байтах размер следующего поля - поля данных (LLC Data). Если общая длина кадра меньше 64 байт, то за полем LLC Data следует поле Pad. Для протокола более высокого уровня не возникает путаницы с определением типа кадра, так как для кадра IEEE 802.3 значение этого поля не может быть больше 1500 (0x05DC). Поэтому, в одной сети могут свободно сосуществовать оба формата кадров, более того один сетевой адаптер может взаимодействовать с обоими типами посредством стека протоколов.

  • Данные (LLC Data): поле данных, которое обрабатывается подуровнем LLC.

  • Дополнительное поле (pad - наполнитель) - заполняется только в том случае, когда поле данных невелико, с целью удлинения длины кадра до минимального размера 64 байта -преамбула не учитывается. Ограничение снизу на минимальную длину кадра необходимо для правильного разрешения коллизий.

  • Контрольная последовательность кадра (FCS, frame check sequence): 4-х байтовое поле, в котором указывается контрольная сумма, вычисленная с использованием циклического избыточного кода по полям кадра за исключением преамбулы, SDF и FCS.

Сам по себе кадр IEEE 802.3 еще не окончательный. В зависимости от значений первых нескольких байт поля LLC Data, могут быть три окончательных формата кадра IEEE 802.3:

- Ethernet_802.3 (не стандартный, в настоящее время устаревающий формат, используемый Novell) - первые два байта LLC Data равны 0xFFFF;

- Ethernet_SNAP (стандартный IEEE 802.2 SNAP формат, которому отдается наибольшее предпочтение в современных сетях, особенно для протокола TCP/IP) - первый байт LLC Data равен 0xAA;

- Ethernet_802.2 (стандартный IEEE 802.2 формат, взят на вооружение Novell в NetWare 4.0) - первый байт LLC Data не равен ни 0xFF (11111111), ни 0xAA (10101010).

Условие корректной работы сети Ethernet

Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Если какая-либо передающая станция не распознает коллизию и решит, что кадр данных ею передан верно, то этот кадр данных будет утерян. Конечно, скорее всего искаженная информация будет повторно передана каким-либо протоколом верхнего уровня, например, транспортным или прикладным, работающим с установлением соединения и нумерацией своих сообщений. Но повторная передача сообщения протоколами верхних уровней произойдет через гораздо более длительный интервал времени (десятки секунд) по сравнению с микросекундными интервалами, которыми оперирует протокол Ethernet. Поэтому, если коллизии не будут надежно распознаваться узлами сети Ethernet, то это приведет к заметному снижению полезной пропускной способности данной сети.

Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. Именно для этого минимальная длина поля данных кадра должна быть не менее 46 байт (что вместе со служебными полями дает минимальную длину кадра в 72 байта или 576 бит). Длина кабельной системы выбирается таким образом, чтобы за время передачи кадра минимальной длины сигнал коллизии успел бы распространиться до самого дальнего узла сети. Поэтому для скорости передачи данных 10 Мбит/с, используемой в стандартах Ethernet, максимальное расстояние между двумя любыми узлами сети не должно превышать 2500 метров.

С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например, Fast Ethernet, максимальная длина сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet она составляет 210 м, а в гигабитном Ethernet ограничена 25 метрами.

Независимо от реализации физической среды, все сети Ethernet должны удовлетворять двум ограничениям, связанным с методом доступа:

  • максимальное расстояние между двумя любыми узлами не должно превышать

2500 м,

  • в сети не должно быть более 1024 узлов.

Кроме того, каждый вариант физической среды добавляет к этим ограничениям свои ограничения, которые также должны выполняться.

. Уточним основные параметры операций передачи и приема кадров Ethernet, кратко описанные выше. Станция, которая хочет передать кадр, должна сначала с помощью MAC-узла упаковать данные в кадр соответствующего формата. Затем для предотвращения смешения сигналов с сигналами другой передающей станции, MAC-узел должен прослушивать электрические сигналы на кабеле и в случае обнаружения несущей частоты 10 МГц отложить передачу своего кадра. После окончания передачи по кабелю станция должна выждать небольшую дополнительную паузу, называемую межкадровым интервалом (interframe gap), что позволяет узлу назначения принять и обработать передаваемый кадр, и после этого начать передачу своего кадра.

. Одновременно с передачей битов кадра приемно-передающее устройство узла следит за принимаемыми по общему кабелю битами, чтобы вовремя обнаружить коллизию. Если коллизия не обнаружена, то передается весь кадр, поле чего MAC-уровень узла готов принять кадр из сети либо от LLC-уровня.

. Если же фиксируется коллизия, то MAC-узел прекращает передачу кадра и посылает jam-последовательность, усиливающую состояние коллизии. После посылки в сеть jam-последовательности MAC-узел делает случайную паузу и повторно пытается передать свой кадр.

В случае повторных коллизий существует максимально возможное число попыток повторной передачи кадра, которое равно 16. При достижении этого предела фиксируется ошибка передачи кадра, сообщение о которой передается протоколу верхнего уровня.

Для того, чтобы уменьшить интенсивность коллизий, каждый MAC-узел с каждой новой попыткой случайным образом увеличивает длительность паузы между попытками. Временное расписание длительности паузы определяется на основе усеченного двоичного экспоненциального алгоритма отсрочки (truncated binary exponential backoff). Пауза всегда составляет целое число так называемых интервалов отсрочки.

. Интервал отсрочки (slot time) - это время, в течение которого станция гарантированно может узнать, что в сети нет коллизии. Это время тесно связано с другим важным временным параметром сети - окном коллизий (collision window). Окно коллизий равно времени двукратного прохождения сигнала между самыми удаленными узлами сети - наихудшему случаю задержки, при которой станция еще может обнаружить, что произошла коллизия. Интервал отсрочки выбирается равным величине окна коллизий плюс некоторая дополнительная величина задержки для гарантии:

интервал отсрочки = окно коллизий + дополнительная задержка

. В стандартах 802.3 большинство временных интервалов измеряется в количестве межбитовых интервалов, величина которых для битовой скорости 10 Мбит/с составляет 0.1 мкс и равна времени передачи одного бита.

. Величина интервала отсрочки в стандарте 802.3 определена равной 512 битовым интервалам, и эта величина рассчитана для максимальной длины коаксиального кабеля в 2.5 км. Величина 512 определяет и минимальную длину кадра в 64 байта, так как при кадрах меньшей длины станция может передать кадр и не успеть заметить факт возникновения коллизии из-за того, что искаженные коллизией сигналы дойдут до станции в наихудшем случае после завершения передачи. Такой кадр будет просто потерян.

. Время паузы после N-ой коллизии полагается равным L интервалам отсрочки, где L - случайное целое число, равномерно распределенное в диапазоне [0, 2N]. Величина диапазона растет только до 10 попытки (напомним, что их не может быть больше 16).

Значения основных параметров процедуры передачи кадра стандарта 802.3 приведено в таблице 1.

Таблица 1

Битовая скорость

10 Мбит/c

Интервал отсрочки

512 битовых интервалов

Межкадровый интервал

9.6 мкс

Максимальное число попыток передачи

16

Максимальное число возрастания диапазона паузы

10

Длина jam-последовательности

32 бита

Максимальная длина кадра (без преамбулы)

1518 байтов

Минимальная длина кадра (без преамбулы)

64 байта (512 бит)

Длина преамбулы

64 бита

При передаче больших кадров, например 1500 байт, коллизия, если она вообще возникнет, обнаруживается практически в самом начале передачи, не позднее первых 64 переданных байт (если коллизия не возникла в это время, то позже она уже не возникнет, поскольку все станции прослушивают линию и, "слыша" передачу, будут молчать). Так как jam-сигнал значительно короче полного размера кадра, то при использовании алгоритма CSMA/CD количество в холостую израсходованной емкости канала сокращается до времени, требуемого на обнаружение коллизии. Раннее обнаружение коллизий приводит к более эффективным использование канала. Позднее обнаружение коллизий, свойственное более протяженным сетям, когда диаметре коллизионного домена составляет несколько километров, снижает эффективность работы сети. На основании упрощенной теоретической модели поведения загруженной сети (в предположении большого числа одновременно передающих станций и фиксированной минимальной длины передаваемых кадров у всех станций) можно выразить производительность сети U через отношение RTD/ST:

,

где - основание натурального логарифма. На производительность сети влияет размер транслируемых кадров и диаметр сети. Производительность в наихудшем случае (когда RDT=ST) составляет около 37%, а в наилучшем случае (когда RTD много меньше, чем ST) стремится к 1. Хотя формула и выведена в пределе большого числа станций, пытающихся передавать одновременно, она не учитывает особенностей алгоритма усеченной бинарной экспоненциальной задержки, рассмотренного ниже, и не справедлива для сильно перегруженной коллизиями сети, например, когда станций, желающих передавать становится больше 15.

Основные функциональные параметры стандарта Ethernet приведены в табл.1.

Таблица 1.

Основные функциональные параметры Ethernet IEEE 802.3

Битовая скорость (bit rate), Мбит/с

10 (Манчестерское кодирование)

Время слота (slot time), мкс (BT)

51,2 (512)

Межкадровый интервал (interframe gap), мкс (BT)

9,6 (96)

предел попыток (attempt limit)

16

предельная задержка (backoff limit)

10

размер jam-сигнала (jam size), биты

32

максимальный размер кадра (maximum frame size), байты

1518

минимальный размер кадра (minimum frame size), байты

64

Длительность Jabber-сигнала, при которой повторитель останавливает передачу и изолирует сегмент, мс

20-150

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]