Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект по ТЭС.docx
Скачиваний:
258
Добавлен:
13.02.2016
Размер:
5.73 Mб
Скачать

Лекция 5: «декодирование линейных кодов»

Существует три основных метода декодирования линейных кодов:

- декодирование по максимуму правдоподобия (по минимуму расстояния);

- мажоритарное декодирование (по большинству проверок);

- декодирование по синдрому.

5.1 ДЕКОДИРОВАНИЕ ПО МАКСИМУМУ ПРАВДОПОДОБИЯ

Правило декодирования:

В качестве переданного слова следует выбирать слово, которое ближе всего по Хэммингу к принятому.

Рисунок 5.1 – Структурная схема декодера по минимуму расстояния.

На рисунке: УСр – устройство сравнения; ГКС – генератор кодовых слов; РУ – решающее устройство.

Данный метод используется, когда число информационных символов мало ().

5.2 МАЖОРИТАРНОЕ ДЕКОДИРОВАНИЕ

Основано на том, что каждый информационный символ можно выразить через другие символы кодового слова с помощью линейных соотношений. Окончательное решение о значении символа принимается по мажоритарному принципу (по большинству) результатов таких проверок.

Существует три способа построения систем проверочных уравнений для декодирования символа:

- системы с разделенными проверками – символ, относительно которого разделяется система, входит во все уравнения. Любой другой символ входит не более, чем в одно уравнение. Для коррекции ошибок необходимоуравнений в системе;

- системы с -связанными проверками – символ, относительно которого разрешается система, входит во все уравнения. Любой другой символ входит не более, чем вуравнений. Для коррекцииошибок необходимоуравнений в системе;

- системы с квазиразделенными проверками – система разделима относительно некоторой суммы символов. На первом этапе она разрешается относительно суммы символов, а на втором – относительно конкретного символа.

Рисунок 5.2 – Структурная схема мажоритарного декодера.

На рисунке: 1…k – устройства, реализующие проверки для соответствующей системы; МЭ – мажоритарный элемент, принимающий решение о значении символа по большинству результатов проверок.

Пример 5.1:

Код (8,4) задан матрицей:

.

Система уравнений по матрице Н:

Система проверочных уравнений для :

Система проверочных уравнений для :

Система проверочных уравнений для :

Система проверочных уравнений для :

Пусть .

Результат декодирования: .

5.3 ДЕКОДИРОВАНИЕ ПО СИНДРОМУ

Основано на стандартной таблице – таблице всех возможных принятых из канала слов, организованной таким образом, что может быть найдено ближайшее к принятому кодовое слово. Она содержит строк истолбцов.

Таблица – Стандартная таблица.

s1=(0…0)

r

b1=(0…0)

n

b2

bM

s2

sN

e2

eN

b2+e2

b2+eN

bM+e2

bM+eN

bi – кодовые слова;

ej – векторы ошибок – образцы ошибок минимального веса;

bi+ej – слова, не являющиеся кодовыми;

si=ei∙HT – синдромы – векторы размерностью r, указывающие на наличие и расположение ошибок в принятом слове.

Правило декодирования:

1. Вычисляется синдром по принятому слову:

.

Если , тоявляется кодовым словом. В противном случае ()содержит ошибки.

2. По находится наиболее правдоподобный вектор ошибки.

3. Ближайшее к принятому кодовое слово получается в результате суммированияи:

.

Рисунок 5.3 – Структурная схема декодера по синдрому.

На рисунке: Б – буфер хранения принятого слова; БВС – блок вычисления синдрома; С – селектор (дешифратор) синдрома; К – корректор.

Данный метод используется, когда число проверочных символов мало (<10).

Пример:

Составить стандартную таблицу для систематического кода (5,2) с порождающей матрицей:

.

Таблица должна содержать строк истолбцов.

Таблица – Стандартная таблица.

b1=(00000)

b2=(01011)

b3=(10101)

b4=(11110)

s1=(000)

e2=(00001)

b2+e2=(01010)

b3+e2=(10100)

b4+e2=(11111)

s2=e2∙HT=(001)

e3=(00010)

b2+e3=(01001)

b3+e3=(10111)

b4+e2=(11100)

s3=e3∙HT=(010)

e4=(00100)

b2+e4=(01111)

b3+e4=(10001)

b4+e2=(11010)

s4=e4∙HT=(100)

e5=(01000)

b2+e5=(00011)

b3+e5=(11101)

b4+e2=(10110)

s5=e5∙HT=(011)

e6=(10000)

b2+e6=(11011)

b3+e6=(00101)

b4+e2=(01110)

s6=e6∙HT=(101)

e7=(01100)

b2+e7=(00111)

b3+e7=(11001)

b4+e2=(10010)

s7=e7∙HT=(111)

e8=(11000)

b2+e8=(10011)

b3+e8=(01101)

b4+e2=(00110)

s8=e8∙HT=(110)

Пусть (10111). Проведем декодирование.

1. ;

2. ;

3. .

ЛЕКЦИЯ 6: «НЕПРЕРЫВНЫЕ (РЕКУРРЕНТНЫЕ) КОДЫ»

6.1 ОБЩИЕ СВЕДЕНИЯ

Непрерывные коды используют непрерывную обработку информации короткими фрагментами. Кодер для непрерывного кода обладает памятью, т.е. символы на его выходе зависят не только от очередного фрагмента информационных символов на входе, но и предыдущих символов на его входе и (или) выходе. Поэтому коды называются рекуррентными (recur – возвращаться, повторяться).

Эти коды применяют для обнаружения и исправления пакетов ошибок. Пакет ошибок – ошибка, затрагивающая цепочку символов. Описывается длиной и вектором ошибок.

Пример 6.1:

Пакеты ошибок длиной 4 могут быть такими:

К непрерывным кодам относят цепной и сверточные. Цепной код является простейшим случаем сверточных.

6.2 ЦЕПНОЙ КОД

В таком коде после каждого информационного символа следует проверочный. Закодированная последовательность имеет вид:

где - шаг сложения. Определяет корректирующие возможности кода;

- информационные символы;

- проверочные символы. Формируются по правилу:

Код позволяет исправить пачки ошибок длиной , если они разделены защитным интервалом.

6.3 СВЕРТОЧНЫЕ КОДЫ (СК)

Это линейные, рекуррентные коды. Название обусловлено тем, что кодирование информации СК представляет собой операцию свертки двух функций:

где - входная последовательность информационных символов;

- номер входа;

- выходная последовательность кодовых символов;

- номер выхода;

- порождающий полином.

Набор порождающих полиномов определяет внутреннюю конструкцию кодера.

Рисунок 6.1 – Обобщенная структурная схема кодера СК.

Кодирующее устройство содержит регистров сдвига и сумматоры по модулю два. Количество двоичных разрядов-ого регистра сдвига определяется старшей степенью полинома. Коэффициенты полиномаопределяют связи между двоичными разрядами-ого регистра сдвига и-ым выходом кодера.

На практике чаще используются коды с единственным входным потоком () поэтому индексобычно опускается.

Пример 6.2:

Рисунок 6.2 – Структурная схема кодера несистематического СК с и.

ЛЕКЦИЯ 7: «ГЕНЕРАТОРЫ С ВНЕШНИМ ВОЗБУЖДЕНИЕМ»

ГЕНЕРАТОР (от лат. – производитель) – устройство, преобразующее энергию источника питания в энергию электрических колебаний требуемой формы, частоты и мощности.

7.1 КЛАССИФИКАЦИЯ ГЕНЕРАТОРОВ

1) ПО СПОСОБУ ВОЗБУЖДЕНИЯ различают генераторы с внешним возбуждением (ГВВ) и автогенераторы (АГ).

ГВВ – устройство, работающее в вынужденном режиме, т.е. колебания на его выходе наблюдаются только при наличии колебаний от внешнего источника на его входе. ГВВ предназначены для усиления мощности, умножения частоты колебаний, осуществления АМ и ЧМ.

АГ – устройство, работающее в автоколебательном режиме, т.е. колебания на его выходе возникают без внешнего источника сигнала. Являются первоисточниками электрических сигналов различной формы.

2) По ФОРМЕ ГЕНЕРИРУЕМЫХ КОЛЕБАНИЙ различают АГ гармонических и негармонических (релаксационных или импульсных) колебаний.

Гармонические колебания формируются в процессе плавного обмена энергиями между магнитным и электрическим полями, концентрирующимися в катушке индуктивности и конденсаторе. Используются в радиотехнических и измерительных устройствах.

Релаксационные колебания формируются в результате накопления энергии в поле реактивного элемента с последующей отдачей ее резистору, где она безвозвратно переходит в тепло (рассеивается). Используются в импульсной и цифровой технике.

3) По частоте генерируемых колебаний различают инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц) и сверхвысокочастотные (свыше 100 МГц) генераторы.

4) По выходной мощности различают маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт) генераторы.

5) По типу используемых активных элементов различают генераторы ламповые, транзисторные, на операционных усилителях, на туннельных диодах, на динисторах.

6) ПО ВИДУ ЧАСТОТНО-ИЗБИРАТЕЛЬНОЙ ЦЕПИ различают генераторы -,- и-типа.

7) По виду обратной связи различают генераторы с внутренней (с отрицательным сопротивлением) и с внешней (специально созданной) обратной связью.

8) По схеме питания различают генераторы последовательного (транзистор и колебательный контур включены последовательно по отношению к источнику питания) и параллельного (транзистор и колебательный контур включены параллельно по отношению к источнику питания) питания.

9) ПО СПОСОБУ ПОДКЛЮЧЕНИЯ НАГРУЗКИ (по числу точек, в которых колебательный контур соединен с активным элементом) различают двухточечные и трехточечные генераторы.

7.2 ИСПОЛЬЗОВАНИЕ ГВВ ДЛЯ УМНОЖЕНИЯ ЧАСТОТЫ

УМНОЖЕНИЕ ЧАСТОТЫ – получение из гармонического колебания с частотой другого гармонического колебания с частотой, где- целое положительное число.

Умножение частоты необходимо, когда непосредственное генерирование колебаний требуемой частоты затруднительно.

Пример: Высокостабильные кварцевые генераторы устойчиво работают на частотах до 30 МГц. Умножением частоты можно получить кварцевую стабилизацию и на более высоких частотах.

Умножение частоты включает две операции:

1) Формирование из исходного гармонического колебания колебания сложной формы. Выполняется при помощи НЭ.

2) Выделение из спектра частот полученного колебания нужной гармоники. Выполняется с помощью фильтра.

Умножение частоты технически реализуется тремя способами: методом отсечки, импульсным методом и радиоимпульсным методом.

7.3 МЕТОД ОТСЕЧКИ

Рисунок 7.1 – Электрическая принципиальная схема умножителя частоты на транзисторе:

- высокодобротные колебательные контуры, настроенные на частоту входного гармонического колебания и частоту выделяемой гармоники. При уверенности, что на входе – гармоническое колебание, контурможет отсутствовать;

- НЭ;

- источник коллекторного питания;

- источник напряжения смещения. Обеспечивает требуемое положение рабочей точки (РТ) на проходной характеристике .

Гармоническое колебание приложено к переходу база-эмиттер и управляет током коллектора в выходной цепи. Транзистор работает в режиме с отсечкой (в режиме класса С). Это обеспечивается выбором РТ в нижней части ВАХ. В результате формируются косинусоидальные импульсы коллекторного тока. Это означает, что в спектре такого тока содержатся гармоники с частотами, кратными частоте:

,

где - постоянная составляющая выходного тока;

- амплитуда -ой гармоники выходного тока;

- амплитуда импульсов выходного тока;

- крутизна ВАХ;

- угол отсечки;

- оптимальный угол отсечки – угол, при котором нужная (-ая) гармоника выходного тока имеет максимальную амплитуду.

Резонансный контур выделяет требуемую гармонику .

Рисунок 7.2 – Метод отсечки: - гармоническое воздействие;- ВАХ и ее аппроксимация (пунктирная линия);- отклик на гармоническое воздействие;- спектр выходного тока.

Коэффициент умножения при таком методе не превышает четырех. Для получения большего(103…105) применяют многокаскадные схемы. Для умножения в большее число раз используют другие методы.

7.4 ИМПУЛЬСНЫЙ МЕТОД

Рисунок 7.3 – Структурная схема умножителя частоты:

Г – генератор гармонических колебаний;

Ф – формирователь коротких прямоугольных импульсов ();

ПФ – полосовой фильтр. Из спектра частот полученной последовательности импульсов выделяет составляющую нужной частоты.

7.5 РАДИОИМПУЛЬСНЫЙ МЕТОД

Рисунок 7.4 – Структурная схема умножителя частоты:

Г1 – импульсный генератор. Управляет (манипулирует) Г2;

Г2 – генератор, формирующий радиоимпульсы с прямоугольной огибающей.

Чтобы гармоника нужной частоты имела наибольшую амплитуду, нужно выполнить условие:

,

где - частота заполнения радиоимпульсов;

и - частота и период повторения манипулирующих импульсов.

Рисунок 7.5 – Временная и спектральная диаграммы радиоимпульсов:

- длительность радиоимпульса.

ЛЕКЦИЯ 8: «LC-АВТОГЕНЕРАТОРЫ»

8.1 ЭЛЕКТРИЧЕСКАЯ СТРУКТУРНАЯ СХЕМА АГ

Рисунок 8.1 – Структурная схема LC-автогенератора.

Основным узлом генератора является колебательная система (колебательный контур). Она определяет форму генерируемых колебаний.

Для поддержания незатухающих колебаний энергия от внешнего источника питания через управляемый активный элемент периодически добавляется в колебательную систему, компенсируя потери в ней.

Управление активным элементом необходимо для того, чтобы энергия добавлялась синфазно с существующими в системе колебаниями. Управление на него подается с колебательной системы через цепь положительной обратной связи.

Источник питания, активный элемент и цепи обратной связи являются вспомогательными узлами, с помощью которых компенсируются потери энергии в колебательной системе.

8.2 ПРОЦЕСС ВОЗБУЖДЕНИЯ КОЛЕБАНИЙ В АГ

Функционирование генератора можно разделить на два этапа:

- этап возбуждения генератора;

- этап стационарного режима.

Рисунок 8.2 – Процесс установления колебаний в АГ.

После включения источника питания в генераторе начинается процесс возникновения колебаний. В первый же момент во всех цепях проходят кратковременные импульсы токов. Т.к. одиночный импульс образует сплошной спектр колебаний, частота одного из них обязательно совпадет с собственной частотой колебательной системы генератора. Это колебание возбудит колебательную систему, и по цепи обратной связи поступит на вход активного элемента, многократно усилится и «просуммируется» с существующими в колебательной системе колебаниями. Амплитуда колебаний при этом будет непрерывно возрастать. Физически это объясняется тем, что за один период колебаний энергии поступает в колебательную систему больше, чем расходуется.

8.3 ЭНЕРГЕТИЧЕСКОЕ РАВНОВЕСИЕ В АГ

По мере роста амплитуды колебаний начинает проявляться нелинейность ВАХ активного элемента и усиление уменьшается. Нарастание амплитуды колебаний АГ замедляется, а затем и вовсе прекращается. Наступает стационарный режим. Он характеризуется динамическим равновесием между поступлением энергии в колебательную систему и ее потерями. В установившемся режиме генератор выдает колебания постоянной частоты и амплитуды.

ЛЕКЦИЯ 9: «РЕЖИМЫ РАБОТЫ И ВОЗБУЖДЕНИЯ АГ»

9.1 Комплексное уравнение АГ

Стационарный режим работы автогенератора характеризуется постоянной амплитудой генерируемых колебаний.

Коэффициент усиления усилителя без обратной связи (см. структурную схему автогенератора):

,

где и- соответственно комплексные амплитуды выходного и входного напряжений;

- модуль коэффициента усиления;

- его аргумент, учитывающий сдвиг фаз между входным и выходным напряжениями усилителя.

Если в качестве колебательной системы использован одиночный колебательный контур с резонансным сопротивлением , то

, где - амплитуда первой гармоники выходного тока усилительного элемента.

,

где - средняя крутизна ВАХ усилительного прибора.

При малых значениях крутизнапрактически равна статической крутизне в рабочей точке, при увеличенииона уменьшается.

Подставляя последнее выражение в предыдущее, получаем:

.

Тогда

и

Коэффициент передачи цепи обратной связи:

где - аргумент коэффициента передачи, определяющий сдвиг фаз между входным и выходным напряжениями ЦОС.

Результирующий коэффициент усиления усилителя, охваченного цепью ОС:

.

Если в колебательной системе установятся синусоидальные колебания с постоянной амплитудой (стационарный режим):

Подставляя в это выражение значения иполучаем:

.

Это условие стационарности АГ. Оно распадается на два:

или

и

,

9.2 Условие баланса амплитуд

или – условие баланса амплитуд: в стационарном режиме коэффициент передачи по замкнутому кольцу генератора равен 1.Условие баланса амплитуд выполняется лишь при определенном значенииUmвх , т. е. при определенной стационарной амплитуде колебаний Umвых. Из этого условия получаем:

.

Если , амплитуда колебаний на выходе АГ нарастает до тех пор, пока вновь не выполнится условие.

При возникновение автоколебаний невозможно, поскольку энергия, поступающая в колебательную систему недостаточна для компенсации потерь.

Условие баланса амплитуд определяет стационарную амплитуду выходных колебаний и наименьший коэффициент передачи ЦОС (критический, ), обеспечивающий самовозбуждение АГ.

9.3 Условие баланса фаз

Это условие определяется выражением ,: в стационарном режиме суммарный угол сдвига фаз при обходе замкнутого кольца автогенератора должен быть равен 0 или целому числу 2.

В цепях автогенератора могут быть следующие сдвиги фаз:

1. Сдвиг фаз на угол , созда­ваемый усилительным элементом (на­пример, транзистором при его включе­нии по схеме с общим эмиттером), меж­ду его входным и выходным напряжениями.

2. Сдвиг фаз на угол , возни­кающий в цепи обратной связи между ее входным и выходным напряжениями.

3. Сдвиг фаз на угол между напря­жением на входе усилительного элемен­та и первой гармоникой его выходного тока. Этот сдвиг возни­кает на очень высоких частотах и при правильном выборе лампы или тран­зистора .

4. Сдвиг фаз на угол между напря­жениеми током. Если колебательный контур точно настроен на частоту первой гармоники выходного тока, угол = 0°.

Таким образом, условие баланса фаз можно переписать в следующем виде:

или .

Соотношение означает, что для выполнения условия баланса фаз цепь обратной связи должна изменять фазу подводимого к ней переменного напря­жения на 180°. В большинстве автогенераторов существует лишь одна частота, на кото­рой выполняется условие баланса фаз, т. е. на которой возможно генериро­вание колебаний. Следовательно, условие баланса фаз определяет частоту автоколебаний.

9.4 Режим мягкого самовозбуждения АГ

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительно­го элемента, и от коэффициента К0.с возможны два режима самовозбужде­ния: мягкий и жесткий.

В режиме мягкого самовозбуждения рабо­чую точку А выбирают на линейном участке ВАХ усилительного элемента (рисунок 9.1,а), что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока. В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения, всегда имею­щихся в реальных условиях из-за флук­туации носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности ВАХ усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки ВАХ со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны Sср и коэффициента передачи К цепи обрат ной связи.

Рисунок 9.1 – Диаграммы, поясняющие режимы самовозбуждения.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи уменьшится до единицы. В результате в автогенераторе установится стацио­нарный режим, которому соответствует определенная амплитуда выходных ко­лебаний, причем угол отсечки выходно­го тока 0> 90°. Частота этих колебаний очень близка к резонансной частоте колебательной системы. Обратим внимание: если бы усили­тельный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности вольт-амперной характеристики форма выходного тока усилительного элемента получается несинусоидальной. Однако при доста­точно большой добротности (Q=50…200) колебательной системы первая гармо­ника этого тока и, следовательно, на­пряжение на выходе автогенератора представляют собой почти гармоничес­кие колебания.

9.5 Режим жесткого самовоз­буждения

При этом режиме напря­жение смещения задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначи­тельные колебания, возникшие в конту­ре, не могут вызвать ток в выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возни­кают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникно­вения и нарастания колебаний при жестком режиме самовозбуждения иллюстрируется на рисунке 9.1, б. Видно, что при малых начальных амплитудах входного напряжения (кривая 1) ток iвых = 0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напря­жения (кривая 2) и быстро нарастают до установившегося значения. В ста­ционарном режиме усилительный эле­мент работает с углами отсечки выход­ного тока <90°.

Для удобства эксплуатации автогене­ратора целесообразнее применять мяг­кий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника пи­тания. Однако при жестком режиме колебаний с углом отсечки <90° обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режи­ме автогенератора более выгоден имен­но режим с малыми углами отсеч­ки выходного тока усилительного эле­мента.

ЛЕКЦИЯ 10: «УСТОЙЧИВОСТЬ РАБОТЫ АГ»

Процесс возник­новения и установления колебаний в автогенераторе удобно исследовать с помощью колебательных характери­стик и линий обратной связи.

10.1 Колебательные характе­ристики

Они представляют со­бой зависимости амплитуды первой гармоники выходного тока усилитель­ного элемента Im1 от амплитуды входно­го напряжения Umвх при неизменном на­пряжении смещения U0 и разомкнутой цепи обратной связи:. Эти зависимости имеют нелинейный характер и могут быть получены экспе­риментально путем перевода генератора в режим с внешним возбуждением.

Рисунок 10.1 – Колебательные характеристики АГ.

На рис. 10.1 показаны три колеба­тельные характеристики, соответствую­щие разным напряжениям смещения. Характеристика 1 соответствует смеще­нию, при котором крутизна вольт-ам­перной характеристики имеет наиболь­шее значение. По мере увеличения на­пряжения Umвх средняя крутизна па­дает, и наклон характеристики умень­шается.

Характеристика 2 соответствует мень­шему напряжению смещения, при кото­ром статическая крутизна ВАХ усилительного эле­мента в рабочей точке меньше макси­мальной крутизны. Вследствие этого с увеличением напряжения средняя крутизна Sср растет и лишь при очень больших значениях Umвх начинает уменьшаться.

Третья характеристика соответствует случаю, когда при отсутствии входного сигнала ток через усилительный эле­мент не проходит. Этот ток, а следова­тельно, ток в колебательном контуре, появляется лишь при некоторой ампли­туде напряжения Umвх, достаточной для отпирания лампы или транзистора в течение части периода высокочастот­ного колебания.

10.2 Линии обратной связи

Эти линии определяют зависимость амплитуды Umвх, т. е. выходного на­пряжения цепи обратной связи, от ам­плитуды тока Im1, являющегося вход­ным током этой цепи: .

Поскольку иполучаем

.

Отсюда следует, что линии обратной связи графически изображаются в виде прямых, выходящих из начала коорди­нат (рис. 10.2). Наклон этих прямых различен и зависит от значения коэф­фициента Кос. Чем сильнее обратная связь в автогенераторе, тем меньший угол наклона имеет линия обратной свя­зи относительно оси Umвх (на рис. 10.2 ).

Рисунок 10.2 – Линии обратной связи.

10.3 Определение стационар­ной амплитуды колебаний

В стационарном режиме АГ амплитуда входного напряже­ния Umвх и соответствующая данному режиму амплитуда первой гармоники выходного тока Im1 усилительного эле­мента должны одновременно удовлетво­рять обоим указанным зависимостям. Это возможно только в точках пересече­ния колебательной характеристики и линии обратной связи. На рис. 10.3 ось абсцисс колебательной характе­ристики Umвх служит одновременно осью ординат линий обратной связи 2-5, причем масштаб на них одинаковый. По общей оси ординат характеристики 1 и линий 2-5 откладывается ток Im1.

Линия обратной связи 2, соответст­вующая коэффициенту передачи цепи обратной связи , имеет с ко­лебательной характеристикой 1 общую точку только в начале координат. В этом случае самовозбуждения автоге­нератора не происходит из-за малого коэффициентаКос или малого значения резонансного сопротивления контура Rрез.

Рисунок 10.3 – Определение стационарного состояния АГ в режиме мягкого самовозбуждения.

При критическом коэффициенте прямая обратной связи3 сливается с колебательной характери­стикой в области ОА, в которой она линейна, но не пересекает эту характе­ристику.В данном случае самовозбуждение также отсутствует, что подтверждает вывод: в автогенераторе, работающем в линейном режиме и имеющем , получить автоколебания не­возможно.

Колебания в АГ возникают лишь при коэффициенте , которо­му соответствует линия обратной связи4. Эта линия в условиях мягкого режи­ма самовозбуждения имеет с колеба­тельной характеристикой две общие точки, 0 и В. Точка В соответст­вует стационарному состоянию автогенератора, характеризующемуся ампли­тудами тока Im1B и напряжения UmвхВ. В это состояние генератор приходит в процессе самовозбуждения, но может выйти из него под действием различных дестабилизирующих факторов.

Рас­смотрим процессы, которые будут при этом протекать.

Предположим, что напряжение на входе усилительного элемента умень­шилось до значения UmвхС. Это напря­жение вызовет в выходной цепи генера­тора ток Im1C (точка С на рис. 10.3), который, благодаря обратной связи, увеличит напряжение на входе до UmвхА, что приведет, согласно харак­теристике 1, к увеличению тока до Im1A и т. д. В результате генератор вернется в состояние, определяемое точ­кой В пересечения характеристик 1 и 4. Аналогично можно показать, что если под действием каких-либо причин на­пряжение на входе усилительного элемента увеличится и станет больше, чем UmвхВ (точка D на рис. 10.3), генера­тор вновь автоматически перейдет в состояние, определяемое точкой В. Приведенные рассуждения подтверж­дают, что точка В является точкой устойчивого равновесия и соответствует стационарному режиму работы автоге­нератора. Амплитуды напряжения и то­ка в стационарном режиме определяют­ся величиной обратной связи. При уве­личении обратной связи (рис. 3, пря­мая 5) соответствующие стационарные амплитуды увеличиваются до значений UmвхЕ и Im1E.

Рисунок 10.4 – Определение стационарного состояния АГ в режиме жесткого самовозбуждения.

Вторая общая точка колебательной характеристики 1 и линии обратной свя­зи 4 (рис. 103, точка 0) является неустойчивой, так как в ней возникшие колебания вне зависимости от началь­ной амплитуды нарастают до колебаний со стационарными амплитудами, опре­деляемыми положением точки В.

В условиях жесткого режима само­возбуждения (рис. 10.4) колебательная характеристика 1 и линия обратной связи имеют три общих точки: О, А, В. Точка 0 характеризует устойчивое состояние покоя автогенератора, т. е. отсутствие самовозбуждения при малых начальных амплитудах колебаний. Ко­лебания возникают только когда первоначальная амплитуда входного напряжения становится больше UmвхА, определяемого точкой А на рис. 10.4, например, напряжение увеличилось до значения UmвхС . Вызванный этим напряжением ток Im1C увеличит c помощью обратной связи напряжение на входе генератора, что приведет к большему возрастанию тока и т. д.

(см. рис. 10.4, линии со стрелками). В результате достигается устойчивый колебательный режим (точка В), характеризуемый амплитудами UmвхВ и Im1B.

Предположим теперь, что напряжение на входе генератора стало меньше, чем UmвхА и достигло значения UmвхВ, определяемого точкой D. Тогда ток уменьшится до Im1D, что вызовет дальнейшее уменьшение входного напряжения, как это показано линиями со стрелками на рис. 4. В результате колебания затухают. Следовательно, точка А пересечения колебательной характеристики и линии обратной связи характеризует неустойчивое состояние режима автогенератора.

10.4 LC автогенератор с автоматическим смещением

Его применение обеспечивает воз­можность работы автогенератора при первоначальном включении в режиме мягкого самовозбуждения с последую­щим автоматическим переходом в ре­жим жесткого самовозбуждения. Это­го достигают применением в автогене­раторе специальной цепи автоматического смещения. На рис. 10.5, изображена упрощенная принципиальная схема автогенератора на биполярном транзисторе, нагруз­кой которого служит колебательный контур L1C1. Напряжение положитель­ной обратной связи создается на катуш­ке L2 и подводится между базой и эмит­тером транзистора. Начальное на­пряжение смещения на базе транзисто­ра создается источником U0. Последо­вательно с этим источником включена цепь автосмещения R1С2.

Рисунок 10.5 – Принципиальная электрическая схема LC автогенератора с автоматическим смещением.

Рисунок 10.6 - Диаграммы, поясняющие действие цепи автосмещения.

Процесс возникновения и нарастания колебаний иллюстрируется с помощью рис. 10.6. В первый момент после включения генератора, т. е. в момент появления колебаний, рабочая точка А находится на участке максимальной крутизны вольт-амперной характери­стики транзистора. Благодаря этому колебания возникают легко в условиях мягкого режима самовозбуждения. По мере возрастания амплитуды колебаний увеличивается ток базы, постоянная со­ставляющая которого создает падение напряжения Uсм на резисторе R1 (переменная составляющая этого тока проходит через конденсатор С1). Так как напряжение (Uсм приложено между базой и эмиттером в отрицательной полярности, результирующее постоян­ное напряжение на базе U0-Uсм уменьшается, что вызывает смещение рабочей точки вниз по характеристике транзистора и переводит автогенератор в режим работы с малыми углами отсечки коллекторного тока. При этом токи коллектора Iк и базы Iб имеют вид последовательности импульсов, а на­пряжение на выходе Uвых, создаваемое первой гармоникой коллекторного тока, представляет собой синусоидаль­ное колебание с неизменной амплиту­дой.

Таким образом, цепь автоматичес­кого смещения R1С2 в автогенераторе выполняет роль регулятора процесса самовозбуждения и обеспечивает в пер­воначальный момент условия мягкого самовозбуждения с последующим пере­ходом в более выгодный режим с малыми углами отсечки.

ЛЕКЦИЯ 11: « ТРЕХТОЧЕЧНЫЕ LC-АВТОГЕНЕРАТОРЫ»

11.1 ОБОБЩЕННАЯ ТРЕХТОЧЕЧНАЯ СХЕМА

Схемы одноконтурных автогенераторов (с трансформаторной, автотрансфор­маторной и емкостной обратной связью) и большинство других, более сложных схем, могут быть приведены к упрощен­ной, так называемой трехточечной схеме (рисунок 11.1). Такое обобщение упрощает анализ и помогает при составлении схем автогенераторов. Оно возможно благодаря общим требованиям к схемам автогенераторов, заключающимся в обязательней выполнении условий самовозбуждения (баланс фаз, баланс амплитуд).

Рисунок 11.1 – Обобщенная трехточечная схема АГ.

В обобщенной схеме колебательная система, состоящая из трех реактивных сопро­тивлений Хкб, Хбэ, Хкэ (активными сопротивлениями в большинстве случаев можно пренебречь), подключена к транзистору в трех точках: к, б, э, что определило название схемы. От­дельные элементы колебательной си­стемы могут быть конденсаторами, катушками или более сложными элект­рическими цепями, например расстроен­ными параллельными контурами. Усло­вимся также, что сопротивления Хкб, Хбэ, Хкэь включает в себя индуктивности соединительных проводов, междуэлект­родные емкости, емкость монтажа и т. д. Таким образом, колебательная система приводится к контуру, состоящему из трех реактивных сопротивлений, по ко­торым протекает контурный ток . В такой схеме автогенератора колеба­ния могут возбудиться на собственной частоте данного контураf0 (точнее, на очень близкой к ней частоте), опреде­ляемой из условия резонанса, т. е.

Контурный ток создает колебательные напря­жения и , кото­рые для выполнения условия баланса фаз должны быть противофазными, что возможно только, когда реактивные сопротивления Хбэ и Хкэ имеют одина­ковый характер (знак). Характер третьего сопротивления Хкб должен быть противоположным характеру первых двух сопротивлений, образующих контур, иначе резонанс в контуре будет невозможным

Правильно составленная схема автогенератора должна обеспечивать выполнение условий баланса фаз и баланса амплитуд на частоте, близкой к собственной частоте колебаний в контуре. Необходимый для самовозбуждения коэффициент передачи цепи обратной связи, обеспечивающий выполнение условия баланса амплитуд, определяется соотношением:

,

а при самовоз­буждении на частоте, близкой к f0 удовлетворяется также условие

.

Коэффициент при самовоз­буждении должен быть вещественным и положительным, т. е.(ХБЭКЭ)>0, а это еще раз подтверждает, что реактив­ные сопротивления ХБЭ и Хкэ обязатель­но должны быть одного знака.

Можно составить два варианта трех­точечных схем: ндуктивную (рис. 11.2), в которой напряжение обратной связи снимается с катушки L1, и емкостную (рис. 11.3), в которой это напряжение снимается с конденсатора С1.

Рисунок 11.2 – Индуктивная трехточка.

Рисунок 11.3 – Емкостная трехточка.

Сравнивая рисунки, убеждаемся, что генератор с автотрансформаторной обратной связью представляет собой индуктивную трехточечную схему, а генератор с емкостной обратной связью емкостную трехточечную схему.

Получение почти синусоидальных автоколебаний, несмотря на то, что контур автогенератора настроен на частоту, близкую к , и выделяет колебания основной гармоники, в выходном напряжении все же содержатся составляющие с частотами высших гармоник, приводящие к искажению формы выходных колебаний по сравнению с синусоидальной формой.

Высшие гармоники подавляют в основном за счет резонансных свойств контура выходной цепи. Известно, что чем выше добротность контура, тем острее его АЧХ и лучше фильтрация колебаний с частотами, отличающимися от резонансной. Однако получить вы­сокую добротность контура в автогенераторе, особенно транзисторном, трудно. Поэтому принимают дополнитель­ные меры к подавлению высших гар­моник. К ним относятся следующие:

подключают нагрузку к индуктивной ветви выходного контура, так как токи высших гармоник в основном проходят через емкостную ветвь, имеющую для них меньшее сопротивление;

применяют многоконтурные выход­ные цепи, в которых фильтрующие свойства одного контура дополняются и усиливаются другими контурами;

применяют двухтактные автогенера­торы, обеспечивающие эффективное по­давление гармоник;

включают дополнительные заграж­дающие фильтры (в автогенераторах, работающих на одной частоте), наст­роенные на n-ю гармонику;

применяют в выходных цепях диапа­зонных автогенераторов фильтры нижних частот, пропускающие основные коле­бания рабочего диапазона и ослабляю­щие все гармоники;

выбирают в усилительных каскадах, следующих за автогенератором, углы отсечки коллекторного (анодного) тока = 90°, так как при этом в импульсе то­ка отсутствуют высшие нечетные гар­моники.

11.2 ГЕНЕРАТОР С АВТОТРАНСФОРМАТОРНОЙ ОБРАТНОЙ СВЯЗЬЮ

Принципиальная схема та­кого автогенератора изображена на рис. 11.4.

Рисунок 11.4 - Принципиальная электрическая схема автогенератора с автотрансформаторной связью.

Схема содержит колебатель­ный контур второго вида L1C4, к трем точкам которого к, э, б соответст­венно подключены коллектор, эмиттер (через блокировочные конденсаторы большой емкости С1, СЗ) и база (через разделительный конденсатор С2) транзистора VТ. Начальное смещение на базе транзистора задается делителем напряжения R1, R2. Элементы RЗ, СЗ образуют цепь автосмещения, создавае­мого падением напряжения на резисто­ре RЗ при протекании по нему посто­янной составляющей эмиттерного тока.

Напряжение обратной связи снимается с части витков катуш­ки L1, которая одновременно служит делителем напряжения UкБ, действую­щего на контуре. Как видно из схемы, условие баланса фаз выполняется пото­му, что напряжение Uъэ всегда изме­няется в противофазе с переменным напряжением на коллекторе . В этом можно убедиться, рас­смотрев направление токов в ветвях контураL1С4. Индуктивность катушки L1 в точке э делится на Lкэ, образующую левую (индуктивную) ветвь контура, и на UБЭ, которая с конденсатором С4 образует правую (емкостную) ветвь. Так как токи iL и iС в ветвях параллель­ного контура в любой момент времени противоположны по направлению, на­пряжения Uбэ и Uкэ противофазны.

11.3 АВТОГЕНЕРАТОР С ЕМКОСТНОЙ ОБРАТНОЙ СВЯЗЬЮ

Одна из возможных схем такого генератора представлена на рис. 11.5. В этой схеме применен колебательный контур третьего вида L2С4С5, соединенный точками к, э, б соответственно через конденсаторы СЗ, С2 и С1 с коллекто­ром, эмиттером и базой транзистора VT1. В автогенераторе применена схема параллельного коллекторного питания, в которой источник питания, колеба­тельный контур и транзистор включены параллельно друг другу. Для ос­лабления шунтирующего действия вы­сокочастотного дросселя L1 на контур индуктивность дросселя выбирают ис­ходя из соотношения L2=(10...20)L1. Общую емкость контура составляют емкости двух конденсаторов: С4 и С5, причем С4 образует емкостную ветвь контура, а С5 и L1 — индуктивную ветвь. Так как соответствующие токи iС и iL в любой момент времени направлены противоположно друг дру­гу, напряжения Uкэ и UБЭ противофазны. Следовательно, условие баланса фаз выполняется, поскольку напряже­ние , снимаемое с конден­сатора С5, является напряжением об­ратной связи, а , снимаемое с С4, - выходным напряжением генера­тора.

Рисунок 11.5 – Принципиальная электрическая схема АГ с емкостной обратной связью.

ЛЕКЦИЯ 12: «СТАБИЛИЗАЦИЯ ЧАСТОТЫ LC-ГЕНЕРАТОРОВ»

12.1 ОБЩИЕ СВЕДЕНИЯ

Одним из важнейших показателей качества работы генератора является стабильность частоты. Стабильность частоты определяет электромагнитную совместимость система радиосвязи, искажения сигналов при модуляции и детектировании и др. показатели качества передачи сообщений.

СТАБИЛЬНОСТЬ ЧАСТОТЫ – способность АГ сохранять частоту выходных колебаний постоянной при воздействии дестабилизирующих факторов. Она оценивается абсолютной и относительной нестабильностями.

АБСОЛЮТНАЯ НЕСТАБИЛЬНОСТЬ – разность между текущим и номинальным значениями частоты:

.

ОТНОСИТЕЛЬНАЯ НЕСТАБИЛЬНОСТЬ – отношение абсолютной нестабильности к номинальному значению частоты:

.

Относительная нестабильность частоты АГ при изменении его температуры на 10С называется температурным коэффициентом частоты (ТКЧ).

12.2 ПРИЧИНЫ НЕСТАБИЛЬНОСТИ ЧАСТОТЫ

Частота генерируемых колебаний определяется параметрами колебательного контура, а также параметрами других активных и пассивных элементов схемы. Изменение любого из них приводит к изменению частоты. Это может происходить под воздействием ДЕСТАБИЛИЗИРУЮЩИХ ФАКТОРОВ:

- изменения внешних условий (температуры влажности, давления);

- механических сотрясений и вибраций;

- нестабильности напряжения источника питания;

- старения радиоэлектронных элементов;

- переключений, регулировок, изменения нагрузки генератора.

12.3 МЕТОДЫ СТАБИЛИЗАЦИИ ЧАСТОТЫ:

- конструктивное выполнение АГ с защитой от внешних механических и климатических воздействий (жесткий монтаж, амортизация шасси, герметизация отдельных деталей или АГ в целом, термостатирование и др.);

- увеличение добротности колебательных систем АГ;

- стабилизация источников питания и режимов НЭ;

- параметрическая стабилизация – стабилизация параметров элементов схемы АГ при изменении внешних факторов;

- кварцевая стабилизация частоты – использование кварцевых резонаторов в схемах АГ.

12.4 КВАРЦЕВАЯ СТАБИЛИЗАЦИЯ ЧАСТОТЫ

Кварцевый резонатор представляет собой кварцевую пластинку 1, помещенную между двумя металлическими электродами 2 и закрепленную с помощью кварцедержателя 3.

Рисунок 12.1 – Эскиз конструкции кварцевого резонатора.

Кварцевые пластины обладают пьезоэлектрическим эффектом. ПРЯМОЙ ПЬЕЗОЭФФЕКТ состоит в том, что при механической деформации пластины на ней появляются электрические заряды, а ОБРАТНЫЙ – в деформации пластины под воздействием электрического поля.

Если к зажимам цепи, содержащей резонатор, подвести переменное напряжение ~, то в ней возникнет переменный ток.

Рисунок 12.2 – Условное изображение кварцевого резонатора.

Ток достигает максимума при совпадении частоты внешнего переменного напряжения с собственной резонансной частотой кварцевой пластины .

Рисунок 12.3 – Частотная характеристика кварцевого резонатора.

Кварцевый резонатор можно представить в виде эквивалентной электрической схемы, приведенной ниже.

Рисунок 12.4 – Эквивалентная электрическая схема кварцевого резонатора:

Lкв, Скв, Rкв – эквивалентные параметры кварцевой пластины;

С0 – емкость между электродами.

В целом образовался колебательный контур третьего вида. В нем резонанс наблюдается на двух частотах:

- частоте последовательного резонанса;

- частоте параллельного резонанса.

Расхождение между частотами очень небольшое (сотни герц). Частоты резонансов очень стабильны и могут использоваться в качестве эталонных.

Для любых частот, кроме узкой полосы сопротивление кварцевого резонатора имеет емкостной характер и лишь для отмеченной полосы – индуктивный.

Рисунок 12.5 – Изменение реактивного сопротивления кварцевого резонатора.

В схемах генераторов кварцевые резонаторы можно использовать как эталонные фильтры и как эталонные индуктивности.

Пример первого способа использования представлен на рисунке 12.6.

Рисунок 12.6 – Кварцевый генератор, выполненный по фильтровой схеме.

Схема является фильтровой, т.к. кварцевый резонатор выполняет в ней роль конденсатора, замыкающего цепь ПОС индуктивной трехточки. Автогенератор возбуждается на частоте последовательного резонанса , на которой сопротивление резонатора минимальное и чисто активное. Это означает, что коэффициент обратной связи будет наибольшим (выполняется условие БА). Кроме того, на этой частоте цепь ПОС не вносит дополнительного фазового сдвига (выполняется условие БФ).

Пример второго способа использования кварцевого резонатора показан на рисунке 12.7.

Рисунок 12.7 – Кварцевый генератор, выполненный по схеме емкостной трехточки.

Кварцевый резонатор выполняет роль индуктивности и включается в соответствующий участок трехточечной схемы генератора (между базой и коллектором в емкостной трехточечной схеме). АГ возбуждается на одной из частот, лежащих между и.

ЛЕКЦИЯ 13: «RC-АВТОГЕНЕРАТОРЫ»

Использование LC-генераторов для генерирования низкочастотных гармонических колебаний затруднительно, т.к. необходимо увеличивать индуктивность и емкость контура, что связано с уменьшением добротности контура и увеличением его габаритов и массы. Поэтому на этих частотах используют RC-генераторы.

Из множества разновидностей на практике находят применение цепочные и мостовые RC-автогенераторы.

13.1 ЦЕПОЧНЫЙ RC-АВТОГЕНЕРАТОР

Рисунок 13.1 – Структурная схема цепочного RC-автогенератора.

Низкочастотный усилитель в пределах полосы пропускания имеет постоянный коэффициент усиления и постоянный фазовый сдвиг 180° между входным и выходным напряжениями. Форма генерируемых колебаний в таком генераторе оказывается зависящей от частотных характеристик цепи обратной связи. Если АЧХ и ФЧХ цепи обратной связи равномерны в полосе частот, равной или превышающей полосу пропускания усилителя, то при выполнении условий БА и БФ в полосе пропускания усилителя, на выходе генератора будут наблюдаться колебания, отличающиеся по форме от гармонических. Если ФЧХ цепи обратной связи такова, что для одной частоты создаются преимущественные условия (фазовый сдвиг 180° между входным и выходным напряжениями), тогда условие БФ будет соблюдаться только для этой частоты, и в такомRC-генераторе возникнут гармонические колебания с частотой .

Для развития процесса самовозбуждения генератора необходимо выбрать коэффициент чуть-чуть больше. Тогда при подключении генератора к источнику питания малейшие колебания на частотечерез цепь ПОС будут поступать на вход усилителя, а т.к., то эти колебания будут усиливаться усилителем чуть больше, чем ослабляться цепью ПОС. Поэтому с каждым циклом амплитуда колебаний на частотебудет возрастать. При достижении амплитудой величины напряжения насыщенияза счет нелинейности амплитудной характеристики коэффициент усиления становится, и на выходе генератора будут установившиеся колебания частотойи постоянной амплитуды. При этом искажения формы гармонического колебания (срез амплитуды) будет минимальным.

Рисунок 13.2 – Временная диаграмма возбуждения генератора.

Для поворота фазы выходного напряжения усилителя на 180° в цепь ПОС включается фазосдвигающая цепь (ФСЦ), состоящая из нескольких (обычно трех или четырех) фазосдвигающих RC-звеньев.

Рисунок 13.3 – Принципиальная схема (а) и векторная диаграмма (б) фазосдвигающего звена.

Практически элементы RC-звена подбираются так, чтобы . В зависимости от включения схемы ФСЦ называютR-параллель или С-параллель.

Рисунок 13.4 – Трехзвенная ФСЦ: R-параллель и С-параллель.

Частота генерируемых колебаний автогенератора соответствует частоте, при которой сдвиг фаз между напряжениями идостигает 180°:

- R-параллель;

- С-параллель.

Требуемый для обеспечения самовозбуждения коэффициент усиления усилителя , где- коэффициент передачи цепи ПОС на частоте генерации.

Рисунок 13.5 – Принципиальная схема RC-автогенератора с трехзвенной ФСЦ:

R1R2 – делитель напряжения. Обеспечивает режим по постоянному току;

R4C1 – элементы температурной эмиттерной стабилизации рабочей точки;

R3 – нагрузка однокаскадного усилителя на транзисторе VT, включенном по схеме с общим эмиттером (ОЭ);

С2 – С4, R5 – R7 – элементы ФСЦ. R5 – R7 должны быть много больше, чем R3, чтобы не уменьшать коэффициент усиления усилителя.

БФ выполняется автоматически, т.к. трехзвенная RC-цепь имеет фазовый сдвиг 1800 и каскад с ОЭ сдвигает фазу на 1800, поэтому суммарный фазовый сдвиг по цепям усиления и цепям обратной связи составляет 3600.

БА выполняется за счет применения каскада с коэффициентом усиления больше 29, т.к. коэффициент передачи трехзвенной RC-цепи 1/29. Это необходимо для выполнения условия самовозбуждения: .

При подключении к источнику питания уменьшается потенциал коллектора (ток коллектора возрастает), и это уменьшение черезRC-цепь поступает на вход усилителя и приводит к уменьшению , т.е. к росту потенциала коллектора. Теперь рост потенциала поступает черезRC-цепь на базу транзистора, увеличивая потенциал базы и уменьшая потенциал коллектора. Таким образом, на выходе устройства наблюдаются колебания электрической энергии.

АГ с ФСЦ обычно применяют для генерирования гармонических колебаний фиксированной частоты, что связано с трудностью перестройки частоты в широком диапазоне.

13.2 RC-АВТОГЕНЕРАТОР С МОСТОМ ВИНА

Рисунок 13.6 – Структурная схема RC-автогенератора с мостом Вина.

Низкочастотный усилитель имеет постоянный коэффициент усиления и постоянный фазовый сдвиг 3600 между входным и выходным напряжениями в пределах полосы пропускания. ФЧХ цепи ПОС такова, что для одной частоты создаются преимущественные условия (нулевой фазовый сдвиг между входным и выходным напряжениями). Т.к. коэффициент передачи двухкаскадного усилителя существенно больше отношения, то выходное напряжение достигнет значенияраньше амплитудного значения, что приведет к значительным искажениям формы колебаний.

Рисунок 13.7 – Искажения формы колебаний.

Линейная отрицательная обратная связь (ООС) приводит к уменьшению коэффициента усиления, а следовательно к уменьшению искажений формы колебаний. Для поддержания и минимальных искажений формы используют автоматическое регулирование коэффициента усиления в зависимости от амплитуды генерируемых колебаний. Для этого используется цепь нелинейной ООС, когда одним из ее элементов является нелинейное сопротивление. Изменение его сопротивления приводит к изменению глубины ООС, а следовательно коэффициента усиления усилителя.

Мост Вина представляет собой четырехплечный мост переменного тока, два плеча которого состоят из частотно зависимых элементов, а два других – чисто активные.

Рисунок 13.8 – Мост Вина:

R1,R2,C1,C2 – частотозависимая ветвь моста (ветвь ПОС);

R3,R4 – активная ветвь моста (ветвь ООС).

Существует единственная частота

,

на которой фазовый сдвиг между подводимым напряжением и напряжением на выходеравен нулю.

Коэффициенты передачи ветви ПОС моста Вина на этой частоте равен . Следовательно, минимальный коэффициент усиления для обеспечения выполнения БА. Реальный двухкаскадный усилитель позволяет получить усиление по напряжению намного превышающий, поэтому такой усилитель охватывается глубокой ООС.

Рисунок 13.9 – RC-генератор с мостом Вина:

VT1, VT2 – усилительные элементы двухкаскадного усилителя;

R1, R2, R3, R4, C2, C2 – частотнозависимая ветвь моста (ветвь ПОС);

R3, R4, R5 – элементы, обеспечивающие режим по постоянному току каскада на VT1;

R6 – нагрузка коллекторной цепи VT1;

R7, R8 – активная ветвь моста (ветвь ООС);

C3, C4 – разделительные конденсаторы, т.е. не пропускают постоянный ток на вход второго каскада и в нагрузку соответственно;

R9,R10 – элементы, обеспечивающие режим по постоянному току каскада на VT2;

R11 – нагрузка коллекторной цепи VT2;

R12 – температурная стабилизация рабочей точки. На R12 образуется сигнал ООС, которым дополнительно охватывается каскад на VT2;

R13 – нагрузка генератора.

БФ выполняется за счет того, что двухкаскадный усилитель на транзисторах, включенных по схеме с ОЭ, имеет полный фазовый сдвиг между сигналами и3600. Мост Вина по частоте генерации не вносит фазового сдвига.

БА выполняется следующим образом. Двухкаскадный усилитель, имеющий коэффициент усиления , охватывают обратной отрицательной связью (в цепях эмиттеров транзисторов отсутствуют конденсаторы и введена активная ветвь моста Вина), которая снижает коэффициент усиления.

При подключении к источнику питания уменьшается потенциал коллектора транзисторов. По частотозависимой ветви моста на вход усилителя (базу VT1) поступает это уменьшение (сигнал ПОС), уменьшая потенциал базы и увеличивая потенциал коллектора. Теперь рост потенциала коллектора поступает по цепи ПОС на вход усилителя и приводит к уменьшению потенциала коллектора и т.д. Таким образом, на выходе будут наблюдаться колебания электрической энергии.

RC-генераторы применяют при радиотехнических измерениях в диапазоне звуковых, низких и очень низких частот.

ЛЕКЦИЯ 14: «ФОРМИРОВАНИЕ ДВУХПОЛОСНЫХ АМ СИГНАЛОВ»

14.1 ОБЩИЕ СВЕДЕНИЯ

Для формирования АМ сигнала необходимо сумму напряжений несущего колебания и модулирующего сигнала подать на вход нелинейной цепи, содержащей полупроводниковый диод или транзистор. Спектр тока в такой цепи содержит составляющие, которых нет в воздействующем на нее напряжении. Остается выделить с помощью электрического фильтра составляющие, образующие АМ сигнал.

На ВАХ диода, транзистора или лампы можно выделить квадратичный и линейный участок. Использование первого участка определяет режим малого сигнала, при котором входное напряжение не должно заходить как в область отсечки, так и в область насыщения. Использование второго участка определяет режим сильного сигнала, при котором входное напряжение переводит транзистор в режим отсечки, а может переводить его и в режим, близкий к насыщению. ВАХ на первом участке аппроксимируют полиномом -ой степени, а на втором участке – ломаной прямой.

Амплитудные модуляторы классифицируют:

1. по схеме соединения НЭ - на однотактные (содержащие один НЭ), балансные (представляющие собой два однотактных), и кольцевые (представляющие собой два балансных);

2. по типу применяемых НЭ – на пассивные (на полупроводниковых диодах) и активные (на лампах, транзисторах).

14.2 ОДНОТАКТНЫЕ МОДУЛЯТОРЫ

Рисунок 14.1 – Принципиальная схема диодного амплитудного модулятора.

Напряжение модулирующего сигнала перемещает рабочую точку по квадратичному участку ВАХ диода путем изменения напряжения смещенияна аноде относительно катода. Зависимость тока через диод от времениимеет сложный характер. Приращения тока различны в положительный и отрицательный полупериоды как несущего, так и модулирующего колебаний. Ток первой гармоникиоказывается промодулированным по амплитуде сигналом. Напряжениена выходе колебательного контура, настроенного на частоту несущейи имеющего полосу пропускания, равную ширине спектра АМ сигнала, пропорционально току этой гармоники. Остальные гармоники тока отфильтровываются, т.к. сопротивление контура на их частотах практически равно нулю.

Рисунок 14.2 – Временные диаграммы работы диодного амплитудного модулятора.

Такой же вывод можно получить, воспользовавшись спектральным методом анализа нелинейной цепи. Пусть ВАХ диода представлена полиномом второй степени:

,

где - коэффициенты аппроксимации;

- бигармоническое воздействие;

- напряжение несущего колебания;

- напряжение модулирующего сигнала.

Вид полинома после подстановки:

.

Подчеркнуты составляющие тока с частотами, сосредоточенными вблизи частоты несущей . В сумме они образуют ток первой гармоники, промодулированный по амплитуде модулирующим сигналом:

Напряжение на контуре:

,

где - входное резонансное сопротивление контура;

- амплитуда напряжения на контуре при отсутствии модуляции;

- коэффициент амплитудной модуляции.

Рисунок 14.3 – Спектр тока через диод.

Т.к. диоды имеют незначительный участок с квадратичной характеристикой, то уровень АМ сигнала на выходе такого модулятора мал.

Для повышения напряжения выходного АМ сигнала диодный модулятор используют в режиме больших значений модулирующего и несущего колебаний. Еще больший его уровень будет, если модулятор выполнить на активном НЭ.

Рисунок 14.4 – Принципиальная схема амплитудного модулятора на транзисторе.

Напряжение смещения обеспечивает режим работы транзистора с отсечкой. За счет того, что рабочая точка перемещается модулирующим сигналом, происходит непрерывное изменение амплитуды и угла отсечки коллекторного тока. Вследствие этого амплитуда первой гармоники коллекторного токаменяется во времени пропорционально модулирующему сигналу. Напряжение на колебательном контуре будет представлять собой АМ сигнал.

Такой же вывод можно получить, воспользовавшись графическим методом анализа нелинейной цепи. Соответствующие построения приведены на рисунке 14.5.

Рисунок 14.5 – Временные диаграммы работы амплитудного модулятора на транзисторе.

Амплитуда импульсов коллекторного тока:

,

где - значение амплитуды импульсов тока при отсутствии модулирующего сигнала;

- размерный коэффициент пропорциональности.

Амплитуда первой гармоники коллекторного тока:

.

Амплитуда напряжения на контуре:

,

где - амплитуда напряжения, обусловленного первой гармоникой коллекторного тока, при отсутствии модуляции;

- коэффициент амплитудной модуляции.

Напряжение на выходе модулятора:

.

При такой модуляции неизбежны искажения: форма огибающей АМ сигнала отличается от формы модулирующего сигнала, т.к. с изменением последнего происходит изменение угла отсечки и соответственно коэффициента Берга.

14.2 БАЛАНСНЫЙ (ДВУХТАКТНЫЙ) МОДУЛЯТОР

Позволяет получить балансно-модулированный (БМ) сигнал, спектр которого состоит из двух боковых полос и не содержит несущего колебания.

Рисунок 14.6 – Принципиальная схема диодного балансного модулятора.

При положительной полуволне напряжения несущей частоты оба диода открыты, сопротивление их мало, и через первичную обмотку трансформатора Тр2 протекает выходной ток. При отрицательной полуволне диоды закрыты, сопротивление их велико и тока в обмотке нет. Этот ток имеет вид импульсов. С изменением полярности модулирующего напряжения изменяется направление тока (отрицательные импульсы). Отсутствие колебания несущей частоты на выходе модулятора объясняется тем, что несущее колебание подается в средние точки трансформаторов Тр1 и Тр2 и магнитные потоки, создаваемые токами несущей частоты ив полуобмотках трансформаторов, имеют встречные направления и взаимно уничтожаются. Нагрузкой модулятора служит контур, настроенный на несущую частоту, который выделяет БМ сигнал.

Рисунок 14.6 – Временные диаграммы модулирующего напряжения, напряжения несущей и выходного тока.

Воспользуемся спектральным методом анализа нелинейной цепи. Пусть ВАХ диодов одинаковы и аппроксимируются полиномом второй степени. Пусть в некоторый момент времени полярность напряжений такая, как указана на рисунке 14.5. Тогда напряжение на диодах:

; .

Токи в цепях диодов:

;

.

Токи в трансформаторе Тр2 направлены встречно и результирующее напряжение на выходе схемы с учетом подавления некоторых составляющих контуром:

.

Рисунок 14.7 - Спектр выходного тока.

В балансном модуляторе в выходном токе отсутствуют составляющие нелинейного преобразования с частотами ,,. При этом облегчается выделение БМ сигнала.

ЛЕКЦИЯ 15: «ФОРМИРОВАНИЕ ОДНОПОЛОСНЫХ АМ СИГНАЛОВ»

Передача информации одной боковой полосой имеет следующие преимущества:

- не тратится мощность передатчика на передачу несущих колебаний, за счет чего можно увеличить мощность колебаний передаваемой боковой полосы, а следовательно, и дальность действия связи;

- при отсутствии модуляции мощность не расходуется, т.к. передачи несущих колебаний нет;

- меньше занимаемая полоса, что позволяет отведенную для системы полосу частот уплотнить большим числом каналов;

- требуется более узкая полоса пропускания приемника, что повышает помехозащищенность за счет снижения уровня помех в рабочей полосе.

15.1 МЕТОДЫ ФОРМИРОВАНИЯ ОМ СИГНАЛА

1) Метод фильтрации.

Рисунок 15.1 – Структурная схема.

С помощью балансного (или кольцевого) модулятора БМ получают двухполосный сигнал с подавленной несущей. Далее полосовым фильтром ПФ выделяется требуемая боковая полоса частот.

Недостаток: т.к. частотный разнос между боковыми полосами раван 2Fmin, то к ПФ предъявляются жесткие требования по полосе расфильтровке (применяются высокодобротные пьезокерамические и кварцевые фильтры).

2) Метод фазирования.

Рисунок 15.2 – Структурная схема.

Для перемножения сигналов используются балансные (или кольцевые) модуляторы БМ1 и БМ2. На БМ2 входные сигналы иподаются через фазовращатели на 900 ФВ1 и ФВ2. Если модулирующий сигнал имеет более сложный спектр, то ФВ1 должен обеспечить изменение фазы всех спектральных составляющих.

Для формирования нижней боковой полосы частот нужно просуммировать полученные произведения; верхней – следует использовать вычитание. Это можно доказать, воспользовавшись тригонометрическими формулами:

,

.

ЛЕКЦИЯ 16: «ФОРМИРОВАНИЕ ЧМ И ФМ СИГНАЛОВ»

Существуют прямые и косвенные методы получения ЧМ и ФМ сигналов.

16.1 ПРЯМОЙ МЕТОД ЧМ

Представляет собой параметрическое управление частотой колебаний автогенератора АГ. С этой целью в колебательный контур АГ вводят дополнительную емкость или индуктивность (управляющее устройство УУ), изменяющуюся по закону модулирующего сигнала.

Рисунок 16.1 – Структурная схема прямого метода ЧМ.

Недостаток: снижение стабильности средней частоты автоколебаний , т.к частота АГ должна изменяться в широких пределах.

Наиболее часто применяется частотный модулятор на основе варикапа.

Рисунок 16.2 – Принципиальная схема частотного модулятора с варикапом.

Параллельно контуру LC-генератора с индуктивной обратной связью подключен варикап – полупроводниковый диод, емкость которого зависит от напряжения, приложенного в направлении запирания p-n перехода. Конденсатор C2 соединяет по высокой частоте варикап с емкостью контура С1 и подбирается так, чтобы его сопротивление было мало на высокой генерируемой частоте и велико на частоте модулирующего сигнала. Разделительный дроссель L3 необходим для предотвращения замыкания высокой генерируемой частоты через источники напряжений: постоянного запирающего и модулирующего.

Модулирующее напряжение изменяет запирающее напряжение на варикапе, вследствие чего меняется емкость варикапа и соответственно генерируемая частота.

Рисунок 16.3 – Вольт-фарадная характеристика варикапа.

Тогда частота автоколебаний:

,

где - средняя частота автоколебаний;

- индуктивность контура;

- емкость контура;

- средняя емкость контура;

- начальная емкость варикапа. Определяется напряжением ;

- изменение емкости контура;

- соответствующее ему изменение частоты.

При незначительном изменении емкости контура мгновенная частота контура будет изменяться в соответствии с законом изменения управляющего напряжения:

.

Знак «минус» в выражении означает, что при увеличении емкости генерируемая частота уменьшается.

16.2 ПРЯМОЙ МЕТОД ФМ

Устройством, на выходе которого фаза гармонического колебания изменяется пропорционально модулирующему сигналу , является резонансный усилитель У сLC колебательным контуром в качестве нагрузки, если к контуру усилителя подключается реактивное сопротивление (УУ), управляемое модулирующим сигналом. Изменение частоты настройки контура приводит к изменению фазы напряжения на контуре.

Рисунок 16.4 – Структурная схема прямого метода ФМ.

Рисунок 16.5 – Принципиальная схема фазового модулятора с варикапом.

Несущее колебание поступает от генератора на базу транзистора, на котором построен резонансный усилитель. Параллельно емкости контура через разделительный конденсатор С2 подключен варикапVD1, управляемый источником модулирующего сигнала.

При изменении емкости варикапа происходит изменение реактивного сопротивления контура и, следовательно, сдвига фаз между напряжением несущей на входе усилителяи напряжением на резонансном контуре.

Рисунок 16.6 – ФЧХ контура.

Уравнение фазовой характеристики контура с добротностью для небольших расстроекимеет вид:

.

Неискаженная ФМ имеет место, когда изменение пропорционально, т.е. на линейном участке фазовой характеристики, где.

16.3 КОСВЕННЫЙ МЕТОД ЧМ

Состоит в преобразовании ФМ в частотную. Для этого на входе фазового модулятора помещают интегратор. Таким образом, ЧМ сигнал получают в результате фазовой модуляции интегральной функцией модулирующего сигнала.

Рисунок 16.7 – Структурная схема косвенного метода ЧМ.

Покажем, что ФМ можно преобразовать в ЧМ.

При ЧМ частота изменяется по закону:

,

а фаза:

.

где - размерный коэффициент пропорциональности.

Достоинство: возможность обеспечения сколь угодно высокой стабильности средней частоты (кварцевая стабилизация), поскольку модуляция осуществляется в промежуточном каскаде, а не в АГ.

Недостаток: невозможность получения широкополосной ЧМ (с большой девиацией частоты); сложность в изготовлении и настройке.

Первый недостаток устраняется путем получения небольших девиаций на низкой частоте с последующим умножением несущей частоты (во столько же раз увеличивается и девиация частоты).

16.4 КОСВЕННЫЙ МЕТОД ФМ

Состоит в преобразовании ЧМ в фазовую. Для этого на входе частотного модулятора помещают дифференцирующую цепь. Таким образом, ФМ сигнал получают в результате частотной модуляции дифференциальной функцией модулирующего сигнала.

Рисунок 16.8 – Косвенный метод ФМ.

Покажем, что ЧМ можно преобразовать в ФМ.

При ФМ фаза изменяется по закону:

,

а частота:

,

где - текущий момент времени;

- размерный коэффициент пропорциональности;

- начальная фаза несущей.

ЛЕКЦИЯ 17: «ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ»

17.1 ПРИМЕНЕНИЕ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

НЕОБХОДИМОСТЬ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ возникает при формировании сигналов в радиопередающих устройствах, аппаратуре многоканальной электросвязи, радиоприемных устройствах.

17.2 ПРИНЦИП ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ – перенос (смещение) спектра сигнала по шкале частот в область более низких или более высоких частот без изменения закона модуляции. Устройство, его осуществляющее, называется ПРЕОБРАЗОВАТЕЛЕМ ЧАСТОТЫ.

Новое значение частоты несущего колебания, полученное на выходе преобразователя частоты, называется ПРОМЕЖУТОЧНОЙ ЧАСТОТОЙ:

,

где - частота гетеродина;

.

Промежуточная частота может быть как выше частоты несущей (преобразование частоты вверх), так и ниже(преобразование частоты вниз).

Процесс преобразования частоты иллюстрируется рисунком 17.2.

Рисунок 17.1 – Временные диаграммы (а, в, д) и спектры (б, г, е) при преобразовании частоты.

На рисунке приведены графики: АМ сигнала и его спектра, дополнительного гармонического колебания и его спектра, сигнала на выходе ПФ и его спектра. Спектр последнего по форме совпадает с исходным спектром сигнала, но сдвинут в область более низких частот на частоту . Огибающая колебания на выходе ПФ полностью совпадает с огибающей АМ сигнала, а частота заполнения уменьшена на значение.

17.3 СХЕМНОЕ ПОСТРОЕНИЕ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ И ИХ ВИДЫ

Рисунок 17.2 – Структурная схема преобразователя частоты.

Обозначения:

См – смеситель – нелинейная цепь, создающая спектр комбинационных частот. Реализуется на НЭ: полупроводниковых диодах, транзисторах, лампах и др.

Г – гетеродин – вспомогательный маломощный автогенератор гармонических колебаний высокой частоты.

ПФ – полосовой фильтр – избирательная система, выделяющая одну из комбинационных частот (промежуточную). Если последняя имеет порядок радиочастот, то им является LC контур, звуковых частот – цепь RC.

ВИДЫ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ:

- по виду НЭ: диодные, транзисторные, интегральные;

- по числу НЭ: простые (1 НЭ), балансные (2 НЭ), кольцевые (4 НЭ);

- по расположению боковых полос сигнала относительно несущей частоты после преобразования частоты: неинвертирующие (, положение боковых полос не меняется), инвертирующие (, боковые полосы меняются местами);

- по схемному построению: с отдельным смесителем и гетеродином (на различных активных элементах), с объединенным смесителем и гетеродином (на одном активном элементе).

17.4 ТРАНЗИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ

Одна из часто применяемых схем преобразователя частоты показана на рисунке 17.3.

Рисунок 17.3 - Принципиальная схема транзисторного преобразователя частоты.

Транзистор выполняет роль смесителя. Источник сигнала и гетеродин включены в цепь базы. В результате нелинейного преобразования образуются комбинационные частоты, которые усиливаются транзистором и поступают в коллекторную цепь. В контуреL3C3 выделяется полезная комбинационная составляющая преобразования. Все остальные продукты преобразования, включая сигнальное и гетеродинное колебания и их гармоники, подавляются.

Функции перемножителя выполняет входная нелинейная цепь: переход база-эмиттер транзистора VT. Пусть зависимость квадратичная:

,

где - переменная составляющая напряжения база-эмиттер.

Осуществим подстановку:

.

Ток коллектора транзистора пропорционален току базы. Из всех слагаемых в этом выражении интерес представляет одно, содержащее произведение напряжений гетеродина и сигнала.

Пусть ,. Тогда это слагаемое:

.

Если контур в цепи коллектора настроить на промежуточную частоту , то все остальные колебания с частотами,,,,будут отфильтрованы. Составляющая тока коллектора разностной частотыобусловливает максимальное напряжение на контуре:

.

Из этого выражения следует, что форма огибающей напряжения на выходе преобразователя совпадает с формой огибающей сигнала на входе, а несущая частота уменьшена на .

ЛЕКЦИЯ 18: «ФОРМИРОВАНИЕ ИМПУЛЬСНО-МОДУЛИРОВАННЫХ СИГНАЛОВ»

Прямые методы осуществляются теми же модуляторами, что и аналоговые модуляции, с небольшими изменениями: в качестве несущей используется периодическая последовательность прямоугольных импульсов (ПППИ), а вместо избирательной цепи на выходе модулятора включается резистивная нагрузка. Последнее связано с достаточно широким спектром импульсного сигнала.

Косвенные методы основаны на преобразовании одного вида модуляции в другой, в том числе аналоговой в импульсную.