Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по подземной гидромеханики.doc
Скачиваний:
223
Добавлен:
17.02.2016
Размер:
6.11 Mб
Скачать

Лекция 2

1. Дифференциальное уравнение движения

Аналитическое и численное исследование задач связано с применением основных законов течения в дифференциальной форме. Для процессов, происходящих в нефте-газовых пластах, характерно изменение основных параметров течения во времени. Такие процессы называются неустановившимися (нестационарными). Для получения дифференциальных уравнений движения выделяется бесконечно-малый элемент и рассматриваются законы сохранения массы, количества движения и энергии за бесконечно малый промежуток времени. При этом используются экспериментальные соотношения, определяющие зависимость силы трения, пористости и т.д. от параметров течения. Число уравнений должно равняться числу неизвестных параметров, что даёт замкнутую систему.

Для подземной гидромеханики характерно изотермическое изменение параметров вследствие значительных величин удельной поверхности коллекторов и их теплоёмкости. Т.о. для таких процессов можно не рассматривать уравнение энергии и ограничиваться уравнениями балланса массы (неразрывности) и движения.

Уравнение энергии необходимо рассматривать в локальных областях призабойной зоны из-за значительных перепадов давления, проявления дроссельного эффекта, а также при применении тепловых методов повышения нефте-газоотдачи.

Для замыкания системы уравнений необходимо введение замыкающих соотношений, а именно уравнений состояния флюидов и пористой среды. Кроме того для получения однозначного решения необходимо задание граничных и начальных условий.

В большинстве случаев решение задач подземной гидродинамике требует использования численных методов и только в сильно идеализированных случаях одномерного течения удаётся получить аналитическое решение.

Рассмотрим фильтрацию флюидов в пористых средах, принимая во внимание линейный закон Дарси.

Выделим два сечения – первое на расстоянии S от начала отсчета вдоль линии тока, второе – на расстоянии S от первого (рис. 1).

Движение флюида происходи в направлении возрастания координаты S. В сечении с координатой S обозначим приведенное давление через p*(S, t), в сечении координат S + S – через p*(S + S ,t), используя формулу ,

получаем

, (20)Рис. 1.Трубка тока

или перейдем к пределу при ,

,(21)

Знак (-) в правой части означает, что приведенное давление падает по движению жидкости, т.е. градиент приведенного давления отрицателен .

Формула (21) справедлива только для изотропной среды, для которой характерно постоянство проницаемости по всем направлениям в окрестности рассматриваемой точки. Однако с переходом от точки к точке пласта проницаемость может и изменяться, таким образом (модель изотропного неоднородного пласта).

Запишем уравнение (21) в проекциях на оси координат x, y, z. Если обозначить через ,,единичные векторы вдоль осей координат, вектор скорости фильтрации можно записать в виде

, (22)

,(23)

тогда

, (24)

или в проекциях на оси координат

, , , (25)

если ось z направлена вверх и дифференциальные уравнения движения примут вид

,, , (26)

в векторной форме . (27)

В дифференциальной форме двучленный закон записывается в виде , (28)

где S – координата, взятая вдоль линии тока по движению жидкости.

В векторной форме двучленный закон выведен из теории размерностей, в виде

(29)

В прекциях на оси координат имеем

, (30)

,

.

При фильтрации неньютоновских вязкопластичных жидкостей, а также при фильтрации с очень малыми скоростями имеет место закон фильтрации (5), который отличается от закона Дарси наличием предельного градиента , по достижении которого начинается движение. В векторной форме закон фильтрации с предельным градиентом выведен из теории размерностей и имеет вид. (31)

; (32)

в проекции на оси координат:

; (33)

;

.

Лекция 3.

Вывод дифференциального уравнения неустановившейся фильтрации однородного флюида по закону Дарси. Функция Л. С. Лейбензона.

Для вывода дифференциального уравнения неустановившейся фильтрации используем уравнение неразрывности

или

(34)

Сумма в скобках в левой части уравнения (34) представляет собой дивергенцию вектора скорости фильтрации и кратко записывается таким образом:

, (35)

поэтому уравнение (34) можно записать в виде:

. (36)

Уравнение (34) (или 36) справедливо только в том случае, если внутри объема нет источников или стоков, выделяющих или поглощающих флюид, не происходит химических реакций, фазовых превращений и т.д.

И уравнения движения

(37)

В уравнении (11) не будем учитывать силу тяжести.

Введем функцию (функцию Лейбензона), тогда дифференциал этой функции равен:

, (38)

тогда

, (39)

т. к. функция Лейбензона и давление зависит от координат x,y,zи времениt, то (38) можно записать в развернутом виде, используя понятие полного дифференциала функции от многих переменных:

.

Сравнивая коэффициенты при x,y,z получаем:

, , , (40)

Запишем выражение для составляющих массовой скорости фильтрации, умножив правую и левую части уравнения (37) на плотность и используя соотношения (40):

, (41)

Подставим выражение (41) в уравнение неразрывности (34), получим:

(42)

или

, (43)

где - оператор Лапласа от функции Лейбензона (39).

Уравнение (42) справедливо для неустановившегося движения однородного флюида в однородной пористой среде по закону Дарси.

При установившейся фильтрации и будет удовлетворяться уравнение Лапласа для функции Лейбензона:

(44)

При k=const,=const, и, тогда можно ввести функцию Лейбензона в виде:

. (45)

Тогда дифференциальное уравнение неустановившейся фильтрации примет вид:

. (46)

Выразим функцию Лейбензона (45) через давление для различных флюидов – несжимаемой жидкости, упругой жидкости, совершенного газа и реального газа. Для этого в (45) подставим соответствующие выражения для плотности и проинтегрируем.

Для несжимаемой жидкости о=const, тогда

, (47)

т. е. функция Лейбензона пропорциональна давлению.

Для упругой жидкости:

, (48)

т. е. имеем тот же вид, что и для несжимаемой жидкости.

Для совершенного газа с уравнением состояния

, (49)

получаем

, (50)

т. е. функция Лейбензона пропорциональна квадрату давления.

Для реального газа с уравнением состояния

, (51)

тогда

, (52)

т. е. функция Лейбензона записывается в виде интеграла.

Т. к. реальные свойства газа проявляются при высоких пластовых давлениях, то в этом случае оказывается существенной зависимость вязкости от давления и нужно использовать функцию Лейбензона в виде (39).

Лекция 4.