Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3

.pdf
Скачиваний:
22
Добавлен:
19.02.2016
Размер:
702.91 Кб
Скачать

Рис. Зона химического заражения.

Зона химического заражения СДЯВ характеризуются длиной (глубиной) и шириной.

Глубина зоны зависит от исходного количества СДЯВ, степени токсичности химического агента, характера местности и метеоусловий.

Ширина зоны распространения паров (аэрозолей) принимается ориентировочно равной 0,03-0,85 глубины а зависимости от свойств вещества и степени вертикальной устойчивости атмосферы.

Различают три типа вертикальной устойчивости атмосферы: а) изотермия - такое состояние приземной атмосферы, когда

температура воздуха примерно одинакова по высоте (20-30 м от поверхности почвы), т.е. вертикального перемещения воздуха почти не наблюдается.

б) инверсия - такое состояние приземной атмосферы, когда нижние слои воздуха холоднее и тяжелее верхних. Отсюда вертикальное перемещение в исходящем направлении происходит ночью или рано утром в ясные малооблачные дни в летнее или зимнее время. Отсюда зараженное облако распространяется на большую глубину.

в) конвекция - такое состояние атмосферы, когда верхние слои воздуха имеют более низкую температуру воздуха, чем приземные. Отсюда, теплый, как более легкий, воздух поднимается вверх, тем самым, вызывая более сильное рассасывание паров и аэрозолей

61

СДЯВ. Зона химического заражения СДЯВ отличается большой подвижностью границ. Существенное влияние на подвижность зараженного облака оказывают:

-степень вертикальной устойчивости атмосферы; -физико-химические свойства СДЯВ; -характер местности; -метеоусловия и время года;

Общие выводы из оценки химической обстановки должны отвечать на следующие вопросы:

- числа лиц, пострадавших от СДЯВ; наиболее целесообразные действия персонала аварийного

объекта, ликвидаторов и населения зараженного района; - дополнительные меры защиты различных контингентов

населения, оказавшихся на зараженной территории.

Классификация приборов радиационной разведки и дозиметрического контроля.

Вданной классификации принципиально нельзя отразить весь спектр приборов для радиационной и химической разведки, т.к. их великое множество.

Вданном вопросе постараемся дать классификацию и характеристику наиболее известных и принятых на снабжение приборов.

Наличие радиоактивных веществ на местности нельзя обнаружить визуально или органолептически и заражение (поражение) может произойти незаметно для человека. Для своевременного и быстрого обнаружения в воздухе, на местности, различных предметах, продуктах питания, источниках водоснабжения, созданы специальные дозиметрические приборы.

1.Приборы радиационной разведки;

2.Приборы контроля радиоактивного заражения;

3.Приборы контроля радиоактивного облучения.

К первой группе относятся следующие приборы - индикаторсигнализатор типа ИМД-21, ДП-64, радиометры ИМД-1, ДП-5 (А, Б, В), а также бытовые радиометры типа "Мастер", "Сосна", "Белла".

Ко второй группе относятся радиометры ДП-5(А, Б, В), ИМД-1, а также бытовой радиометр «Сосна».

62

Ктретьей группе - дозиметры ДКП-50, ИД-1, ИД-11, ДП-70

(ДП-70М).

Как видим, приборов создано великое множество, но в принципе приборы I и П группы выполняют задачи радиационной разведки и контроля радиоактивного заражения.

Работа дозиметрических приборов основана на способности излучений ионизировать вещество среды, в которой они распространяются.

Ионизация, в свою очередь, является причиной некоторых физических и химических изменений в веществе, которые могут быть обнаружены и измерены.

Ктаким изменениям относятся:

-увеличение электропроводности; -люминесценция (свечение);

-засвечивание светочувствительных материалов (фотопленка); -изменение цвета, окраски, прозрачности некоторых

химических растворов.

В зависимости от природы регистрируемого физико-химического явления, происходящего в среде под воздействием ионизирующего излучения различают ионизационный, химический, сцинтилляционный, фотографический и др. методы обнаружения и измерения ионизирующих излучений.

В основе ионизационного метода лежит ионизация газа в замкнутом пространстве. При наличии электрического поля, создаваемого в этом объеме, в ионизируемом газе возникает электрический ток, величина которого пропорциональна степени ионизации газа. Измеряя (после усиления) этот ток, можно судить об интенсивности ионизирующего излучения.

Этот метод положен в основу работы следующих приборов: ДП-5 (А, Б, В), ИМД-1, -12.-21; ИД-1 и др.

Химический метод основан на изменении окраски некоторых растворов под воздействием ионизирующих излучений.

Сравнивая окраску рабочего раствора с эталонным, можно судить о дозе радиоактивного излучения, воздействовавшего на исходный раствор. Этот метод допускает определенную погрешность. Он положен в основу работы приборов ДП-70; ДП-

70М.

Фотографический метод основан на измерении степени почернения фотоэмульсии под воздействием ионизирующего

63

излучения. Примером служит прибор Д-2Р.

Сцинтиляционный метод основан на способности некоторых веществ (люминофоров) испускать под воздействием радиоактивных частиц или квантов вспышки видимого света, преобразуемые в электрический ток, который после усиления может быть измерен (прибор ИД-11).

Люминесцентный метод основан на эффекте поглощения энергии ионизирующего излучения определенными сортами стекла.

При последующем нагревании облучаемого стекла эта энергия высвобождается в виде света.

В основе действия полупроводниковых дозиметрических приборов лежит появление слабых токов при облучении полупроводника. Поскольку сила тока пропорциональная поглощенной дозе излучения, прибор также может быть использован для дозиметрии в широком диапазона.

На этом методе основана работа бытовых радиометров типа "Мастер", "Соска".

Сцинтиляционный и ионизационный методы имеют сходные системы регистрации, отличаясь лишь детекторами излучения.

«Медико-тактическая характеристика чрезвычайных ситуаций военного характера»

Учебные вопросы:

1.Ядерное оружие, его поражающие факторы, их характеристика.

2.Химическое оружие, его характеристика и классификация.

3.Краткая характеристика биологического оружия.

Основой для рассмотрения данного вопроса является возможное применение различных видов оружия по нашей республике и связанных с этим возможных поражений людей и разрушением при этом различных объектов промышленного, социально-культурного характера, жилого фонда и др.

К различным видам оружия относится оружие массового поражения (ядерное, химическое, бактериологическое), различные другие системы оружия, применяющиеся боеприпасы в обычном снаряжении, боеприпасы объемного взрыва, высокоточное оружие, зажигательные смеси и т.п.

64

В данном случае, мы рассматриваем вопросы, связанные с применением оружия массового поражения (ОМП), такого как ядерное, химическое и бактериологическое.

Хотя отношение к этим видам оружия в последнее время резко изменилось в сторону их сокращения и последующей ликвидации, однако, эти виды оружия еще находятся в арсенале ряда стран и готовы к применению в условиях возникновения войны.

Ядерное оружие, его поражающие факторы, их характеристика.

ОМП обладает огромными разрушительными и поражающими возможностями и его применение приведет к образованию в городах, населенных пунктах сельской местности очагов поражения, возникновение пожаров, разрушений и заражение этих пунктов.

Взависимости от применения определенного вида ОМП могут образоваться ядерный, химический, бактериологические очаги поражения, а также их комбинации. Каждый из этих вышеприведенных примеров очага поражения, должен быть определенным образом охарактеризован.

Впонятие "медико-тактическая характеристика очага массового поражения" включается характеристика возможных создавшихся условий на территории очага поражения, которые определяющим образом влияют на состав сил и средств здравоохранения, формы и методы их использования при организации медицинского обеспечения населения.

Оценить обстановку - это значит уточнить число пораженных на объектах, рассчитать необходимое количество сил и средств системы здравоохранения, определить задачи этим силам и организовать лечебно-эвакуационное обеспечение пострадавших. А это возможно только на основе знания поражающего действия современных видов оружия и характеристики очагов массового поражения.

Поэтому и приступаем к ознакомлению с поражающим действием ОМП и первым, основным из них, стоит ядерное оружие.

ОЯП возникает в результате применения ядерного оружия, действие которого основано на использовании внутриядерной энергии, высвобождающейся в результате взрывных ядерных реакций (деления, синтеза или того и другого и одновременно).

65

Очагом ядерного поражения называется территория, на которой под воздействием поражающих факторов возникает разрушения зданий, сооружении, пожары, радиоактивное заражение местности и поражение населения.

Границей очага, поражения условно считается линия, где избыточное давление составляет 10 кПа (килопаскалей). Соотношение 1 кПа = 0,01 кгс/см2.

Размеры очага зависят, главным образом, от мощности и вида взрыва.

По мощности наработанные ядерные боеприпасы условно делятся на сверхмалые (до 1 килотонны), малые - (1-15 кт), средние (15-100 кт), крупные – (100-500 кт) и сверхкрупные - (свыше 500 кт).

По среде применения или виду взрыва ядерные боеприпасы подразделяются на взрывы высотные (космические), воздушные, наземные (надводные), подземные (подводные).

Вцентре ядерной цепной реакции на короткое время температура достигает десятков миллионов градусов, давление - несколько сотен тысяч атмосфер, распад массы ядерного горючего рождает лавину радиоактивных осколков, поток нейтронов и гаммаизлучения.

Врезультате физических процессов ядерного взрыва формируется его поражающие факторы. При воздушных ядерных взрывах образуются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

При наземном и надводных взрывах дополнительное поражение население получит за счет радиоактивного заражения местности и акватории. Отсутствие светового излечения при подземных взрывах усиливает опасность радиоактивного заражения местности, так как не происходит сплавления грунта в радиоактивном облаке.

Таким образом, формируются поражающие факторы ядерного взрыва такие как: взрывная (ударная) волна, световое излучение, проникающая радиация (ионизирующее излучение), радиоактивное заражение местности, электромагнитный импульс.

Вся мощность ядерного взрыва расходуется следующим образом – 85% мощности приходится на кинетическую энергию осколков, за счет которой формируются ударная волна (50%) и световое излучение (35%). На формирование проникающей радиации затрачивается 5% энергии ядерного взрыва, а 10% - на радиоактивное заражение местности.

66

В нейтронном боеприпасе 70-80% энергии идет на образование проникающей радиации.

Ударная волна ядерного взрыва является основным поражающим фактором для большинства ядерных взрывов и представляет собой область сильно сжатого и нагретого воздуха, имеющего избыточное давление (выше атмосферного) и распространяющегося во все стороны от места взрыва (эпицентра) со сверхзвуковой скоростью.

Ударная волна имеет очень большую разрушительную силу и вызывает разрушение наземных и подземных сооружений. Разрушительная и поражающая сила ее зависит от избыточного давления во фронте ударной волны (разница между нормальным атмосферным давлением и максимальным давлением во фронте), скоростного напора воздуха, зависящих в целом от калибра ядерного боеприпаса, расстояние от эпицентра взрыва и времени воздействия.

Избыточное давление измеряется в кПа (килопаскалях) или (постарому) - в килограммах силы на 1 см (кгс/см). Это соотношение выглядит следующим образом:

1 кПа =0,01 кгс/см2.

Сила воздействия ударной волны такова, что наземные сооружения и здания разрушается при избыточном давлении во фронте ударной волны силой в 50-80 кПа, а подземные системы коммунального хозяйства - при 60-100 кПа.

Незащищенным людям поражения наносятся как непосредственно самой волной, так и косвенно обломками зданий, сооружений, осколками стекол и т.п.

Ударная волна ядерного взрыва обычно вызывает акустическую травму, механические повреждения различных частей тела и органов.

Наиболее типичными результатами воздействия является контузия, сдавление и сотрясение мозга.

Тяжесть и характер поражений зависят от параметров ударной волны, метеорологических условий и положения человека в момент воздействия ударной волны. Так, при применении боеприпасов большой мощности (1-10 мегатонн) по крупному городу на значительной части территории будут иметь место тяжелые и крайне тяжелые механические повреждения, а повреждения средней и

67

легкой степени тяжести выйдут далеко за границы пораженного города.

Другим важным обстоятельством воздействия ударной волны является то, что при высоком избыточном давлении во фронте ударной волны температура воздуха резко возрастает. К примеру, при избыточном давлении в 100 кПа температура воздуха возрастает до 350 град. С. Отсюда вероятность появления ожогов открытых частей тела и верхних дыхательных путей.

Классификация зависимости тяжести поражения незащищенных людей от величины избыточного давления во

фронте ударной волны (взрывной волны).

10

- 20 кПа

Неприятное ощущение без потери трудоспособности

2040 кПа

Контузии и травмы легкой степени тяжести

40

- 60 кПа

Поражения средней степени тяжести, потеря сознания

 

 

кровотечение из носа и ушей, возможен смертельный

 

 

исход.

60

- 100 кПа

Поражение тяжелой степени тяжести, сильные

 

 

контузии, переломы конечностей, повреждение

 

 

внутренних органов, высокий процент смертельных

 

 

случаев.

Свыше 100

Крайне тяжелые и смертельные поражения.

кПа

 

Таким образом, в результате воздействия ударной волны, в очаге ядерного взрыва могут возникнуть весьма разнообразные по характеру и тяжести травмы.

К примеру, в г. Хиросима 70-80% всех механических травм были получены за счет летящих предметов и обломков обрушившихся зданий, у 5% пострадавших отмечались закрытые травмы, у 37% - ушибленно-рваные раны, у 11% - переломы костей, у остальных - различной степени механические травмы (ушибы, растяжения, ссадины, кровоподтеки и т.д.).

Световое излучение (СИ) - представляет собой электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной (наибольшее значение) области спектра.

Основное количество энергии СИ выделяется в первые секунды взрыва.

68

Источником излучения является светящаяся область (огненный шар), состоящая из нагретых до высоких температур веществ боеприпаса, воздуха, паров грунта или воды. Поражающее действие светового излучения определяется световым импульсом, измеренным в джоулях на м (дж/м) или в килокалориях на м (ккал/м).

Величина светового импульса зависит от мощности и вида ядерного взрыва. Чем больше мощность ядерного взрыва, тем выше величина светового импульса. Величина светового импульса уменьшается пропорционально квадрату расстояния от центра взрыва. Продолжительность светового импульса составляет от 2 до 10-20 сек. в зависимости от мощности взрыва. Радиус поражения СИ приобретает максимальное значение при воздушном ядерном взрыве. Температура поверхности огненного шара в начале свечения достигает 8-10 тыс. градусов, а в конце - 1-2 тыс. градусов и ниже. Диаметр светящейся области может быть до нескольких киллометров и зависит от мощности взрыва. Скорость распространения светового излучения равняется скорости света (300 тыс. км/сек) так, что человек порой не успевает закрыть глаза, т.к. скорость смыкания гораздо ниже. В результате этого высокая вероятность поражения глаз.

Световое излучение воздействует и на объекты окружающей среды и людей. На объектах окружающей среды в результате воздействия СИ возникают массовые пожары, последствиями которых в подвальных и полуподвальных помещениях может скапливаться угарный газ в больших концентрациях (до 5-6%), который может вызвать массовое отравление людей. Предельно допустимая концентрация СО в воздухе - 0,02 мг/литр. При концентрации СО в 5 мг/л в течение 5 мин. у пострадавших наступает смертельный исход.

Поражение человека возможно в результате непосредственного воздействия светового излучения на кожные покровы (световые или первичные ожоги) или в результате воспламенения одежды и окружающих предметов (вторичные ожоги).

69

По степени тяжести выделяет 4 группы ожогов кожных

покровов:

Ожоги

I

При световом

2-5кал/см2 (100-

степени

 

импульсе

200кдж/м2)

Ожоги

II

 

5-10 кал/см2 (200-

степени

 

 

400кдж/м2)

Ожоги

III

 

5-15кал/см2 (400-600

степени

 

 

кдж/м2)

Ожоги

IV

 

св. 15 кал/см2 (св. 600

степени

 

 

кдж/м2)

Тяжесть поражения людей зависит не только от степени тяжести ожогов, но и размеров обожженных участков тела.

Характер и количество поражений незащищенных людей зависит от калибра ядерного заряда и расстояния от центра взрыва.

Таким образом, в результате воздействия СИ в очаге ядерного взрыва возможно наличие пораженных с ожогами кожных покровов, глаз, слизистой оболочки верхних дыхательных путей, отравления оксидом углерода различной степени тяжести.

Ожоги от непосредственного воздействия СИ составят 50-70%, а ожоги пламенем и раскаленным воздухом не превысят 10%.

Примерно 50-60% составят ожоги тяжелой и средней степени тяжести, а остальные 40-50% - легкой степени.

Проникающая радиация (5-10% общей энергии взрыва)

представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва на многие сотни метров, ионизируя при этом атомы данной среды. Проникающая радиация образуется в процессе реакций деления и синтеза ядер и присуща всем видам ядерных и термоядерных взрывов. Для боеприпасов малой и сверхмалой мощностей проникающая радиация является основным поражающим фактором.

Время действия проникающей радиации ограничено. Так, поражающее действие гамма лучей продолжается около 15 сек., а нейтронов - доли секунды. Пробег гамма лучей в воздухе может быть осуществлен на расстояние до 1,5 километра, а нейтронов – до 1 км.

70

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]