Скачиваний:
137
Добавлен:
07.01.2014
Размер:
199.17 Кб
Скачать

Контактный метод получения серной кислоты.

Рассмотрим процесс получения серной кислоты контактным методом из серного (железного) колчедана. Первой стадией процесса является окисление серного колчедана с получением обжигового газа, содержащего диоксид серы.

Обжиг колчедана (пирита) является сложным физико-химическим процессом и включает в себя ряд последовательно или одновременно протекающих реакций:

Термическая диссоциация 2FeS2 = 2FeS + S2;

Парофазное горение серы S2 + 2О2 = 2SО2;

Горение пирротина 4FeS + 7О2 = 2Fе2О3 + 4SО2.

Суммарная реакция: 4FеS2 + 11O2 = 2Fе2О3 + 8SО2. (I)

При небольшом избытке или недостатке кислорода образуется смешанный оксид железа:

3FеS2 + 8О2 = Fе3О4 + 6SО2.

Термическое разложение пирита начинается уже при температуре около 200 оС и одновременно воспламеняется сера. При температурах выше 680 °С интенсивно протекают все три реакции. В промышленности обжиг ведут при 850 - 900 °С. Лимитирующей стадией процесса становится массоперенос продуктов разложения в газовую фазу и окислителя к месту реакции. При тех же температурах твердый компонент размягчается, что способствует слипанию его частиц.

Таким образом, при протекании реакции (I) помимо газообразного продукта реакции SО2 образуется твердый продукт Fе2О3, который может присутствовать в газовой фазе в виде пыли. Колчедан содержит различные примеси, в частности соединения мышьяка и фтора, которые в процессе обжига переходят в газовую фазу. Присутствие этих соединений на стадии контактного окисления диоксида серы может вызвать отравление катализатора. Поэтому реакционный газ после стадии обжига колчедана должен быть предварительно направлен на стадию подготовки к контактному окислению (вторая стадия), которая помимо очистки от каталитических ядов включает выделение паров воды (осушку), а также получение побочных продуктов (Sе и Те).

На третьей стадии протекает обратимая экзотермическая химическая реакция контактного окисления диоксида серы:

SO2 + 1/2O2 ↔ SO3

Способностью ускорять окисление SO2 обладают различные металлы, их сплавы и оксиды, некоторые соли, силикаты и многие другие вещества. Каждый катализатор обеспечивает определенную, характерную для него степень превращения. В заводских условиях выгоднее пользоваться катализаторами, при помощи которых достигается наибольшая степень превращения, так как остаточное количество неокисленного SO2 не улавливается в абсорбционном отделении, а удаляется в атмосферу вместе с отходящими газами.

Длительное время лучшим катализатором данного процесса считали платину, которую в мелкораздробленном состоянии наносили на волокнистый асбест, силикагель или сульфат магния. Однако платина, хотя и обладает наивысшей каталитической активностью, очень дорога. Кроме того, ее активность сильно понижается при наличии в газе самых незначительных количеств мышьяка, селена, хлора и других примесей. Поэтому применение платинового катализатора приводило к усложнению аппаратурного оформления из-за необходимости тщательной очистки газа и повышало стоимость готовой продукции.

Среди неплатиновых катализаторов наибольшей каталитической активностью обладает ванадиевый катализатор (на основе пентоксида ванадия V2O5), он более дешевый и менее чувстви­тельный к примесям, чем платиновый катализатор.

Реакция окисления SO2 экзотермична; тепловой эффект ее, как и любой химической реакции, зависит от температуры. В интервале 400—700 °С тепловой эффект реакции окисления (в кДж/моль) с достаточной для технических расчетов точностью может быть вычислен по формуле

Q= 10 142 —9.26Т или 24 205 — 2,21Т (в ккал/моль)

где Т — температура, К.

Реакция окисления SO2 в SO3 обратима. Константа равновесия этой реакции (в Па-0.5) описывается уравнением

где Pso3, Pso2, Po2—равновесные парциальные давления SO3, SO2 и O2, Па.

Величина Кр зависит от температуры. Значения Kр в интервале

390—650°С могут быть вычислены по формуле

lgKp = 4905/T – 7,1479

Степень превращения SO2, достигаемая на катализаторе, зависит от его активности, состава газа, продолжительности контакта газа с катализатором, давления и др. Для газа данного состава теоретически возможная, т. е. равновесная степень пре­вращения, зависит от температуры и выражается уравнением

В производственных условиях существенное значение имеет скорость окисления SO2. От скорости этой реакции зависит количество диоксида серы, окисляющегося в единицу времени на единице массы катализатора, и, следовательно, расход катализатора, размеры контактного аппарата и другие технико-экономические показатели процесса. Процесс стремятся вести так, чтобы скорость окисления SO2, а также степень превращения были возможно более высокие.

Скорость окисления SO2 характеризуется константой скорости

где k0—коэффициент; Е — энергия активации, Дж/моль; R—универсальная газовая постоянная, 8,31 Дж/(моль-К); Т — абсолютная температура, К.

Из кинетической теории газов известно, что доля молекул, обладающих энергией, достаточной для того, чтобы при их столкновении произошла реакция, составляет в первом приближении e~E/RT. Таким образом, этот член в уравнении скорости реакции характеризует долю эффективных столкновений, приводящих к образованию молекул SO3. Показатель степени в выражении e~ElRT отрицателен; следовательно, с повышением температуры скорость реакции возрастает, а с увеличением Е уменьшается.

Энергия активации Е реакции окисления SO2 в SO3 очень велика, поэтому без катализатора реакция гомогенного окисления практически не идет даже при высокой температуре. В присутствии твердых катализаторов энергия активации понижается, следовательно, скорость гетерогенной каталитической реакции возрастает. Таким образом, роль катализатора состоит в понижении энергии активации Е.

Последняя стадия процесса — абсорбция триоксида серы концентрированной серной кислотой или олеумом.

Отдельные этапы получения серной кислоты могут быть по-разному скомбинированы в технологической схеме процесса. На рис. 1 представлена принципиальная схема процесса получения серной кислоты из колчедана по открытой схеме с так называемым одинарным контактированием.

Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО2 в SО3. Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы — снизить выбросы в окружающую среду вредного компонента SО2,.

Повышение степени превращения SО2 может быть достигнуто разными путями. Наиболее распространенный из них — создание схем двойного контактирования и двойной абсорбции (ДКДА).

Рис.1. Функциональная схема производства серной кислоты из колчедана методом одинарного контактирования.

Другим возможным вариантом решения той же задачи является проведение процесса по циклической (замкнутой) схеме с применением технического кислорода.

Следует отметить, что принципиальная схема, изображенная на рис. 1, является лишь предварительной схемой, не содержащей большого количества информации. Например, в ней не отражен теплообмен между отдельными потоками, необходимый для энерготехнологической схемы, не указаны типы аппаратов, используемых в каждом узле, и т. д. Решить эти проблемы можно, проведя анализ физико-химических и технологических особенностей отдельных стадий процесса.

Из приведенной на рис. 1 принципиальной схеме следует, что в ней можно выделить четыре основные крупные стадии:

1) получение обжигового газа, содержащего диоксид серы;

2) подготовка обжигового газа к контактному окислению;

3) каталитическое окисление диоксида серы;

4) абсорбция триоксида серы.

При различном технологическом оформлении некоторые детали этих стадий, особенно стадии 2, будут отличаться, однако принципиальный подход к их осуществлению и выбору технологического режима зависит от тех задач, которые решаются на рассматриваемом этапе, и в разных конкретных процессах получения серной кислоты будет одинаковым.