Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Volokonno-opticheskie_sistemy_peredachi_chast_2.doc
Скачиваний:
418
Добавлен:
01.03.2016
Размер:
6.65 Mб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ХАБАРОВСКИЙ ИНСТИТУТ ИНФОКОММУНИКАЦИЙ (ФИЛИАЛ)

ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ

Волоконно-оптические системы передачи Учебное пособие

Часть 2

Конспект лекций по дисциплине ВОСП

для студентов специальности 210404

«Многоканальные телекоммуникационные системы»

Хабаровск

2007

Е.М. Некрасова. Конспект лекций по дисциплине «Волоконно-оптические системы передачи» (часть 2) для студентов среднего профессионального образования специальности 210404 «Многоканальные телекоммуникационные системы»

- г. Хабаровск, ХИИК ГОУ ВПО СибГУТИ, 2007г

Во второй части учебного пособия рассматриваются принципы построения ВОСП PDH и SDH, линейные коды ВОСП, принципы построения систем многоволнового уплотнения. Приводятся основные технические данные и схемы ВОСП, используемых на Дальнем Востоке: SMA-1, SLT-4, hit 7070, SMS600V, ТЛС-31, FlexGain FOM4, «Транспорт-32х30.

Рецензент – заведующая кафедрой МТС ХИИК ГОУ ВПО «СибГУТИ» Кудашова Л.В, рассмотрено на методическом совете ХИИК ГОУ ВПО «СибГУТИ» СПО и рекомендовано к изданию.

г. Хабаровск, 2007г.

СОДЕРЖАНИЕ

Стр.

4 ВОЛОКОННО-ОПТИЧЕСКИЕ СИСТЕМЫ ПЕРЕДАЧИ ПЦИ (PDH)

4.1 Принципы построения ВОСП – ПЦИ. Линейный тракт. Структурная

схема ВОСП………………………………………………………………………....4

4.2 Понятие энергетического потенциала ВОСП. Расчёт длины

регенерационного участка……………………… …………………………..5

4.3 Измерение затухания оптического сигнала в ОВ……………………….….….7

5 ЛИНЕЙНЫЕ КОДЫ ВОСП. КЛАССИФИКАЦИЯ ЛИНЕЙНЫХ КОДОВ ВОСП……………………………………………………………………………..….11

6 СОВРЕМЕННАЯ АППАРАТУРА ВОСП ПЦИ

6.1 Аппаратура ЦВОЛТ серии «Транспорт-32х30» …………………………16

6.2 ТЛС – 31. Мультиплексор ....………...…………….20

6.3 FlexGain FOM4 ……………...………….24

7 ОБОРУДОВАНИЕ ВОСП СИНХРОННОЙ ЦИФРОВОЙ ИЕРАРХИИ (SDH)…………………………………………………………………………....…..27

7.1 Оборудования SDH фирмы Siemens (Германия)………………………….….29

7.1.1 Оборудование SDH фирмы Siemens SMA – 1………………..……….…..30

7.1.2 Оборудование синхронной линии SL-4 ……………………...….35

7.2 SMS-600V фирмы NEC ………………………....42

7.3 SURPASS hiT7xxx - оптика следующего поколения …..………..…..55

8 ПРИНЦИПЫ ОРГАНИЗАЦИИ ВОСП-WDM

8.1 Технология оптиче­ского мультиплексирования с разделением

по длинам волн WDM……………………………….……………………..….64

8.2 Структурная схема ВОСП-WDM…67

8.3 Частотные планы расположения каналов в линейном спектре …………....70

8.4 Основные элементы многоволновых систем ………………………………...73

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………..…………………….…....76

4 Волоконно-оптические системы передачи пци (pdh)

4.1 Принципы построения восп – пци. Линейный тракт

Рисунок 4.1 Структурная схема ВОСП

Цифровой сигнал от аппаратуры ИКМ поступает в преобразователь кода, который преобразует линейный код данной ЦСП в один из оптических кодов и осуществляет согласование уровней по мощности между электрическими (ИКМ) и оптическими (ППЛ, СИД) элементами схемы, так как на выходе ИКМ высокий уровень, а для ЭОП необходим весьма малый уровень. В состав электронно-оптического преобразователя ЭОП входят источник излучения (СИД или ППЛ) и оптический модулятор, который модулирует передаваемым с системы ИКМ цифровым сигналом оптическую несущую (свет). Согласующее устройство передачи (СУпер.) формирует и согласовывают диаграммы направленности и апертуру между передающим оптическим модулем ПОМ и оптическим кабелем.

В качестве СУпер в ВОСП используются собирающие линзы. Как правило, тело линзы ограничено с двух сторон сферическими поверхностями. Поверхности могут быть и цилиндрическими, и параболическими и т.д.

Оптический сигнал с выхода ПОМ фокусируется с помощью СУпер в торец волокна и распространяется по нему до следующей станции.

Через определённые расстояния, обусловленные величиной затухания кабеля, вдоль оптической линии располагаются линейные регенераторы (ЛР), в которых сигнал восстанавливается и усиливается до требуемой величины.

На приёме в качестве СУпр используются рассеивающие линзы. В приёмном оптическом модуле ПРОМ содержится оптоэлектронный преобразователь, который преобразует оптический сигнал в электрический. Преобразователь кода приёма преобразует однополярный сигнал оптического кода в двухполярный, а в аппаратуре ИКМ цифровой сигнал преобразуется в исходный аналоговый.

Для осуществления двухсторонней связи требуется два оптических волокна (одно – на передачу, второе – на приём), что соответствует четырем проводам металлической цепи.

    1. Понятие энергетического потенциала ВОСП. Расчёт длины регенерационного участка

При передаче сигнала по ОВ величина ослабления и искажений зависит от длины участка регенерации lуч. При увеличении lуч уровень оптического сигнала pпр падает плавно на строительных отрезках ОВ и скачком в точках их соединений. Для восстановления сигнала необходимо, чтобы на входе приёмного тракта уровень сигнала pпр  pпр min, где pпр min - минимальный уровень приёма оптического излучения, при котором происходит полное восстановление сигнала, т.е. можно записать:

pпер - ав - nрар - nнан - lуч  pпр, (4.1)

где pпер - уровень сигнала на выходе станции, ав - потери при вводе и выводе излучения в волокно; ар, ан – потери в разъёмных и неразъёмных соединениях на длине регенерационного участка,  -коэффициент затухания оптического волокна. Современные сварочные аппараты обеспечивают потери в неразъёмных соединениях от 0,01 до 0,1 дБ. Потери в лучших образцах разъемных соединителей (оптических коннекторах) составляет 0,35-0,5 дБ на одно соединение. Потери при вводе и выводе излучения в волокно составляют порядка 3 дБ.

Одной из самых важных характеристик ВОСП является значение энергетического потенциала Э. Это максимальное затухание оптического тракта между станциями, при котором ещё происходит полное восстановление сигнала на приёме. Энергетический потенциал рассчитывается по формуле:

Э = pпер - ав - pпр, (4.2)

Зная энергетический потенциал системы, можно рассчитать длину регенерационного участка ВОСП по формуле: lуч = (Э - nрар - nнан) / .

Задача 1. ВОСП длинной 100 км работает на длине волны 1,55 мкм. В линии используется одномодовое ОВ с затуханием =0,25 дБ/км. Строительная длина кабеля = 2 км, потери на каждой сварке – 0,05 дБ. Потери в оптических разъёмах, установленных на конце кабеля с каждой стороны составляют по 0,5 дБ. Мощность сигнала на выходе ППЛ pпер = 0 дБ. Возникает вопрос, можно ли использовать в качестве приёмника оптического сигнала PIN-фотодиод или необходимо использовать ЛФД? При этом известно, что минимальный уровень оптического сигнала на входе PIN-фотодиода pпр min = -28 дБ, а тот же параметр у ЛФД pпр min = -35 дБ.

Решение: Число строительных длин кабеля равно 100/2=50. Число сварок на одну меньше – 49. Суммарные потери на сварках составят 49×0,05 = 2,45 дБ. Потери в ОВ составят 100×0,25 = 25 дБ. Тогда уровень оптического сигнала на входе фотоприёмника составит 0 – 25 – 1 – 2,45 = -28,45 дБ. Эта цифра ниже минимально допустимого уровня на входе PIN-фотодиода pпр min = -28 дБ, что приведёт к повышенному коэффициенту ошибок, что означает необходимость использования для данной линии ЛФД.

Задача 2. ВОСП длинной 160 км работает на длине волны 1,55 мкм. В линии используется одномодовое ОВ с затуханием =0,25 дБ/км. Строительная длина кабеля = 2 км, потери на каждой сварке – 0,05 дБ. Потери в оптических разъёмах, установленных на конце кабеля с каждой стороны составляют по 0,5 дБ. Мощность сигнала на выходе ППЛ pпер = 0 дБ. В качестве приёмника оптического сигнала используется PIN-фотодиод, pпр min = -28 дБ. Возникает вопрос, достаточно ли использовать оптический усилитель на выходе передатчика или необходимо установить ещё предусилитель на входе приёмной станции? Усиление каждого из усилителей равно 17 дБ.

Решение: Число строительных длин кабеля равно 160/2=80. Число сварок – 79. Суммарные потери на сварках составят 79×0,05 = 3,95 дБ. Потери в ОВ составят 160×0,25 = 40 дБ. Оптический усилитель, включённый на выходе ППЛ, усилит сигнал до величины +17 дБ. Тогда уровень оптического сигнала на входе фотоприёмника составит +17 – 40 – 1,5 – 3,95 = -28,45 дБ. Эта цифра ниже минимально допустимого уровня на входе PIN-фотодиода pпр min = -28 дБ. В этом случае придётся включить на входе приёмной станции предусилитель, что даст увеличение чувствительности фотоприёмника до величины минус 45 дБ (-28-17).

    1. Измерение затухания оптического сигнала в ОВ

Во время строительства, монтажа и эксплуатационного обслуживания линий волоконно-оптической связи, а также в процессе профилактических проверок и настроечных работ для измерения оптических потерь используют специальные приборы - оптические тестеры и оптические рефлектометры.

Оптические тестеры, или измерители оптических потерь предназначены для измерения среднего уровня мощности оптического излучения на рабочих длинах волн волоконно-оптических линий (850, 1300 и 1550 нм) и определения затухания сигнала в кабелях и отдельных компонентах линии. Тестеры могут работать как с многомодовыми, так и с одномодовыми ОВ. В состав оптического тестера входят два основных прибора: измеритель оптической мощности и источник излучения. Способ измерения затухания оптического сигнала с помощью оптических тестеров достаточно прост, но он не показывает, произошло ли затухание по всей длине волокна, либо это затухание, локализованное в одном поврежденном месте. Он не показывает, в каком месте кабеля возникла неоднородность.

В связи с этим широкое распространение получили специальные приборы – оптические рефлектометрыOptical Time Domain Reflectometer (OTDR). Благодаря своей универсальности, так как обеспечивают одновременное определение целого ряда важнейших параметров ОК: мест неоднородностей и повреждений, потерь в местах соединений, затухания и расстояний до мест соединений, длин ОВ и т.д 90% всех измерений выполняется именно этим прибором, который является очень дорогим. Единственное, что нужно ОТДР для произведения замеров – это подключение его к одному концу волокна.

      1. Принцип работы ОТДР

Работа ОТДР напоминает работу радара. Он посылает короткие световые импульсы и измеряет время, требуемое для получения отражённого сигнала. В случае радара, это может быть импульс, отражённый от корабля или самолёта. В нашем случае ОТДР излучает световой импульс, который распространяется вдоль волокна до тех пор, пока не встретит какое-то препятствие. Возвращённый сигнал состоит из обратно рассеянного света вдоль волокна и света, отражённого от дефектов волокна. ОТДР представляет результаты измерений в форме следа (графика) затухания на дисплее.

Оптический рефлектометр использует эффект Рэлеевского рассеивания и отражения Френеля для измерения характеристик оптического волокна. Путем подачи импульса света по волокну, измерения времени прохождения («time domain» в ОТДР) и силы отражения («reflectometer» в ОТДР) в точках внутри волокна он вычерчивает траекторию характеристик («trace») расстояния по отношению к уровню отраженного сигнала на дисплее.

Траектория может быть сразу же проанализирована, напечатана для анализа в будущем. Обученный оператор может точно определить, где находится другой конец волокна, местонахождение и потери на сварке, потери всего волокна.

При прохождении по материалу (такому, как оптическое волокно) свет сталкивается с материалом другой плотности (таким, как воздух), некоторая часть света до 4% отражается обратно, в сторону источника света, в то время как остальная часть света проходит дальше. Такие изменения в плотности встречаются на концах волокон, на обрывах волокон и (иногда) в местах сварки.

Отражение зависит от величины изменения в плотности материала, характеристикой которого является коэффициент преломления, чем больше коэффициент преломления, тем выше плотность, и угла, под которым свет ударяется о границу между двумя средами. Волокно, отражающее свет, оставляет впечатление среды с откликом в виде прямой линии с постоянным наклоном. Прямая линия представляет обратное рассеяние от неоднородностей волокна. Вдоль следа наблюдаются ступеньки. Ступенька – это мгновенное изменение мощности. Большинство из этих ступенек, видимые вдоль следа ОТДР, представляют сварные сростки. Ступенька также может быть результатом света, отражённого от микроизгиба волокна.

Поскольку исходный импульс становится слабее при прохождении по волокну (в силу Рэлеевского рассеивания, вызывающего потери), возвращенный уровень обратного рассеивания также становится слабее с удалением от ОТДР. Поэтому данные обычно имеют уровни, уменьшающиеся от начала к концу. Но в случае отражения, уровень мощности резко идет вверх до максимального уровня в соответствующей точке данных до этого места, а именно, над уровнем обратного рассеивания, прямо перед ним.

Первая точка данных (рисунок 4.2) высвечивается с левого конца кривой, как начальная точка волокна. Ее вертикальная позиция основана на уровне мощности возвращенного сигнала: чем выше мощность, тем выше расположение кривой на экране. Следующие точки данных размещаются правее. В результате кривая вычерчивается в виде наклонной линии, идущей с верхнего левого угла по направлению к нижнему правому. Наклон линии по­казывает значение потерь на единицу длины (дБ/км). Резкие наклоны означают большее значение километрического затухания. Точки данных, относящиеся к уровню обратного рассеивания, составляют линию. Отражение выглядит в виде резкого подъема над уровнем обратного рассеивания. Внезапный скачок подъема или спуска уровня обратного рассеивания показывает «точку потерь», что говорит либо о месте сварки, либо о точке механического воздействия на волокно, в которой свет выходит наружу.

Оператор может работать с курсорами на экране для выбора любой точки данных на траектории волокна. Когда курсор находится на какой-либо точке данных, на экране высвечивается расстояние до этой точки. ОТДР с двумя курсорами покажет расстояние до каждого курсора и разницу в уровне обратного рассеивания между ними. Результаты измерений выводятся на дисплей.