Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
582
Добавлен:
08.01.2014
Размер:
609.79 Кб
Скачать

Относительная сила кислот и оснований (схема Косселя)

 

Все кислородные кислоты и основания содержат в составе своих молекул фрагмент Эn+ – О2– – Н+. Хорошо известно, что диссоциация соединения по кислотному или основному типу связана со степенью окисления (более строго, с валентностью) атома элемента. Примем, что связь в этом фрагменте чисто ионная. Это достаточно грубое приближение, поскольку с ростом валентности атома полярность его связей значительно ослабевает (см. гл. 3).

В этом жёстком фрагменте, вырезанном из молекулы кислородной кислоты или основания, место разрыва связи и диссоциация соответственно с выбросом протона или гидроксил-аниона будут определяться величиной взаимодействия между ионами Эn+ и О2–. Чем сильнее это взаимодействие, а оно будет возрастать с увеличением заряда иона (степень окисления) и уменьшением его радиуса, тем более вероятны разрыв связи О–Н и диссоциация по кислотному типу. Таким образом, сила кислородных кислот будет возрастать с увеличением степени окисления атома элемента и уменьшением радиуса его иона.

Отметим, что здесь и далее более сильным из двух является тот электролит, который при одинаковой молярной концентрации в растворе имеет бóльшую степень диcсоциации. Подчеркнём, что в схеме Косселя анализируются два фактора – степень окисления (заряд иона) и радиус иона.

Например, необходимо выяснить, какая из двух кислот более сильная – селеновая H2SeO4 или селенистая H2SeO3. В H2SeO4 степень окисления атома селена (+6) выше, чем в селенистой кислоте (+4). Одновременно радиус иона Sе6+ меньше радиуса иона Sе4+. В результате оба фактора показывают, что селеновая кислота сильнее селенистой.

Еще один пример, марганцевая кислота (HMnO4) и рениевая (HReO4). Степени окисления атомов Mn и Re в этих соединениях одинаковы (+7), поэтому следует сопоставить радиусы ионов Mn7+ и Re7+. Поскольку радиусы однотипных ионов в подгруппе возрастают, делаем вывод, что радиус иона Mn7+ меньше, а значит марганцевая кислота сильнее.

Ситуация с основаниями будет противоположной. Сила оснований возрастает с падением степени окисления атома элемента и увеличением радиуса его иона. Отсюда, если один и тот же элемент образует различные основания, например, ЭОН и Э(ОН)3, то второе из них будет слабее первого, поскольку степень окисления в первом случае меньше, а радиус иона Э+ больше радиуса иона Э3+. В подгруппах сила однотипных оснований будет возрастать. Например, самым сильным основанием из гидроксидов щелочных металлов будет FrOH, а самым слабым – LiOH. Еще раз подчеркнём, что речь идёт о сравнении степеней диссоциации соответствующих электролитов и не касается вопроса об абсолютной силе электролита.

Используем этот же подход при рассмотрении относительной силы бескислородных кислот. Фрагмент Эn– Н+, имеющийся в молекулах этих соединений, заменяем ионной связью:

Сила взаимодействия между этими ионами, разумеется, определяется зарядом иона (степенью окисления атома элемента) и его радиусом. Имея в виду закон Кулона, получаем, что сила бескислородных кислот возрастает с уменьшением степени окисления атома элемента и увеличением радиуса его иона.

Сила бескислородных кислот в растворе будет возрастать в подгруппе, например, галогеноводородных кислот, поскольку при одинаковой степени окисления атома элемента увеличивается радиус его иона.

 

Соседние файлы в папке Общая и неорганическая химия