Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molecular Heterogeneous Catalysis, Wiley (2006), 352729662X

.pdf
Скачиваний:
60
Добавлен:
08.01.2014
Размер:
12.51 Mб
Скачать

Rutger Anthony van Santen and

Matthew Neurock

Molecular Heterogeneous

Catalysis

Related Titles

Dronskowski, R. V.

Computational Chemistry of Solid State Materials

A Guide for Materials Scientists, Chemists, Physicists and others

2006

ISBN 3-527-31410-5

Cramer, C. J.

Essentials of Computational Chemistry

Theories and Models

2002

ISBN 0-471-48552-7

Rutger Anthony van Santen and Matthew Neurock

Molecular Heterogeneous Catalysis

A Conceptual and Computational Approach

WILEY-VCH Verlag GmbH & Co. KGaA

The Authors

Prof. Dr. R. A. van Santen

Eindhoven University of Technology P.O. Box 513

5600 MB Eindhoven The Netherlands

Prof. Dr. M. Neurock

Dept. of Chemical Engineering

School of Engineering and Applied Science

University of Virginia

Charlottesville

VA 22903-4741

USA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for.

British Library Cataloging-in-Publication Data:

A catalogue record for this book is available from the British Library.

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Printing Strauss GmbH, Mörlenbach Binding J. Schäffer GmbH i.G., Grünstadt Cover Design SCHULZ Grafik-Design, Fußgönheim

ISBN-13: 978-3-527-29662-0

ISBN-10: 3-527-29662-X

To Edith and Dory

CONTENTS

Preface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

XIII

1Introduction

1.1

Importance of Catalysis

 

.

.

.

.

.

.

.

.

.

.

.

1

1.1.1

Additional Suggested Textbooks on Heterogeneous Catalysis

 

.

.

.

3

1.2

Molecular Description of Heterogeneous Catalysis

.

.

.

.

.

.

4

1.3

Outline of the Book

.

.

.

.

.

.

.

.

.

.

.

.

8

1.4

Theoretical and Simulation Methods .

.

.

.

.

.

.

.

 

11

2Principles of Molecular Heterogeneous Catalysis

2.1

General Introduction

 

.

.

.

.

.

.

.

.

.

.

.

19

2.1.1

The Catalytic Cycle

 

.

.

.

.

.

.

.

.

.

.

.

20

2.1.1.1

The Sabatier Principle .

.

.

.

.

.

.

.

.

.

.

20

2.1.1.2

Reaction Cycles; Intermediate Reagents

.

.

.

.

.

.

.

25

2.2

Physical Chemistry of Intrinsic Reaction Rates

 

.

.

.

.

.

27

2.2.1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

27

2.2.2The Transition-State Theory Definition of the Reaction Rate Constant;

Loose and Tight Transition States

.

.

.

.

.

.

.

.

28

2.2.3 The Brønsted–Evans–Polanyi Reaction Rate Expression Relations

 

.

32

2.3The Reactive Surface–Adsorbate Complex and the Influence of the

 

Reaction Environment .

.

.

.

.

.

.

.

.

.

.

35

2.3.1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

35

2.3.2

The Materialand Pressure-Gap Problem in Heterogeneous Catalysis .

39

2.3.3

Ensemble E ects and Defect Sites

 

.

.

.

.

.

.

.

.

41

2.3.4

Cluster Size E ects and Metal–Support Interaction .

.

.

.

.

47

2.3.4.1

Metal–Support E ects and Promotion; Relation to Catalyst Synthesis

 

47

2.3.4.2

Cluster Size Dependence

 

.

.

.

.

.

.

.

.

.

.

49

2.3.4.3

Gold Catalysts; an Example of Coordination, Particle Size and Support

 

 

E ects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

53

2.3.4.4

Structural E ects

.

.

.

.

.

.

.

.

.

.

.

.

54

2.3.4.5

Quantum Size E ects

.

.

.

.

.

.

.

.

.

.

.

57

2.3.4.6

Support E ects

 

.

.

.

.

.

.

.

.

.

.

.

.

56

2.3.4.7

Elucidating Mechanisms and the Nature of Active Sites .

.

.

.

57

2.3.4.8

Electron Transfer E ects

 

.

.

.

.

.

.

.

.

.

.

57

2.3.4.9

Neutral Au Clusters

 

.

.

.

.

.

.

.

.

.

.

.

58

2.3.4.10 Negatively Charged Au clusters .

.

.

.

.

.

.

.

.

59

2.3.4.11 Positively Charged Au Clusters .

.

.

.

.

.

.

.

.

60

2.3.5

Cooperativity .

.

.

.

.

.

.

.

.

.

.

.

.

61

2.3.6

Surface Moderation by Coadsorption of Organic Molecules

.

.

.

63

2.3.7

Stereochemistry of Homogeneous Catalysts. Anti-Lock and Key Concept

65

2.4

Surface Kinematics .

.

.

.

.

.

.

.

.

.

.

.

68

2.4.1

Surface Reconstruction .

.

.

.

.

.

.

.

.

.

.

68

2.4.2

Transient Reaction Intermediates in Oxidation Catalysis

 

.

.

.

73

2.5

Summary; Concepts in Catalysis .

.

.

.

.

.

.

.

.

75

Molecular Heterogeneous Catalysis. Rutger Anthony van Santen and Matthew Neurock Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-29662-X

VIII Contents

3The Reactivity of Transition-Metal Surfaces

3.1

General Introduction

.

.

.

.

.

.

.

.

.

.

.

83

3.2

Quantum Chemistry of the Chemical Bond in Molecules

 

.

.

.

83

3.3

Chemical Bonding to Transition-Metal Surfaces

 

.

.

.

.

.

89

3.3.1

Bonding in Transition-Metal Complexes

.

.

.

.

.

.

.

101

3.4

Chemisorption of Atoms: Periodic Trends .

.

.

.

.

.

.

105

3.5

Elementary Quantum Chemistry of the Surface Chemical Bond .

.

113

3.5.1

Molecular Orbital View of Chemisorption. A Summary .

.

.

.

118

3.6Elementary Reaction Steps on Transition-Metal Surfaces. Trends with

 

Position of a Metal in the Periodic Table .

.

.

.

.

.

.

119

3.6.1

General Considerations .

.

.

.

.

.

.

.

.

.

.

119

3.6.2

Activation of CO and Other Diatomics

 

.

.

.

.

.

.

.

121

3.6.3 Association Reactions; Carbon–Carbon Bond Formation

 

.

.

.

126

3.7

Organometallic Chemistry of the Hydroformulation Reaction

 

.

.

127

3.8

Activation of CH4, NH3 and H2O

 

.

.

.

.

.

.

.

.

128

3.9Carbon–Carbon Bond Cleavage and Formation Reactions, a Comparison

 

with CO Oxidation

 

.

.

.

.

.

.

.

.

.

.

.

138

3.10

Lateral Interactions

 

.

.

.

.

.

.

.

.

.

.

.

143

3.10.1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

143

3.10.2

Lateral Interaction Models

.

.

.

.

.

.

.

.

.

.

144

3.10.3 Hydrogenation of Ethylene; the Importance of Lateral Interactions

 

.

146

3.10.4 Lateral Interactions; the Simulation of Overall Surface Reaction Rates

 

148

3.11

Addendum; Hybridization

.

.

.

.

.

.

.

.

.

.

155

4Shape Selective-Microporous Catalysts, the Zeolites

4.1

Zeolite Catalysis, an Introduction

 

.

.

.

.

.

.

.

.

161

4.1.1

Zeolite Structural Features

.

.

.

.

.

.

.

.

.

.

161

4.2

Activation of Reactant Molecules

 

.

.

.

.

.

.

.

.

165

4.2.1

Proton-Activated Reactivity .

.

.

.

.

.

.

.

.

.

165

4.2.2Transition-State Selectivity. Alkylation of Toluene by Methanol

 

Catalyzed by Mordenite

 

.

.

.

.

.

.

.

.

.

.

177

4.2.3

Lewis Acid Catalysis

 

.

.

.

.

.

.

.

.

.

.

.

178

4.2.3.1

Lewis Acidity in Zeolites; Cations Compared with Oxy-Cations .

.

178

4.3

Redox Catalysis

.

.

.

.

.

.

.

.

.

.

.

.

187

4.3.1Selective Oxidation of Alkanes Using the Reducible MxAl1−xPO4

 

Zeolitic Polymorphs

.

.

.

.

.

.

.

.

.

.

.

187

4.3.2

Photo Catalytic Oxidation

.

.

.

.

.

.

.

.

.

.

189

4.3.3 The N2O Decomposition Reaction; Self-Organization in Zeolite Catalysis

190

4.3.4

Oxidation of Benzene by N2O, the Panov Reaction .

.

.

.

.

193

4.4The Zeolite Catalytic Cycle. Adsorption and Catalysis in Zeolites;

 

the Principle of Least Optimum Fit

.

.

.

.

.

.

.

.

195

4.5

Adsorption Equilibria and Catalytic Selectivity

 

.

.

.

.

.

205

4.6

Di usion in Zeolites

.

.

.

.

.

.

.

.

.

.

.

207

5Catalysis by Oxides and Sulfides

5.1

General Introduction

.

.

.

.

.

.

.

.

.

.

.

213

5.2

Elementary Theory of Reactivity and Stability of Ionic Surfaces .

.

214

5.3

The Contribution of Covalency to the Ionic Surface Chemical Bond

.

223

 

 

 

 

 

 

 

 

 

 

 

 

 

Contents

IX

5.3.1

CO Oxidation by RuO2 .

.

.

.

.

.

.

.

.

.

.

223

5.3.2 Atomic Orbital Hybridization at Surfaces; Hydration Energies

 

.

.

226

5.4

Medium E ects on Brønsted Acidity .

.

.

.

.

.

.

.

230

5.5

Acidity of Heteropolyacids

.

.

.

.

.

.

.

.

.

.

234

5.6

Oxidation Catalysis

 

.

.

.

.

.

.

.

.

.

.

.

238

5.6.1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

238

5.6.2

Lessons Learned from Surface Science

 

.

.

.

.

.

.

.

243

5.6.3

Redox Considerations

.

.

.

.

.

.

.

.

.

.

.

244

5.6.4

Bifunctional Systems

 

.

.

.

.

.

.

.

.

.

.

.

246

5.6.5

Butane Oxidation to Maleic Anhydride

 

.

.

.

.

.

.

.

246

5.6.6

Methanol Oxidation

 

.

.

.

.

.

.

.

.

.

.

.

248

5.6.7

Isobutyric Acid Oxidative Dehydrogenation

 

.

.

.

.

.

.

249

5.6.8

Oxidative Dehydrogenation of Propane

 

.

.

.

.

.

.

.

249

5.6.9

Chemical Reactivity of Reducible Oxides .

.

.

.

.

.

.

250

5.6.10 Selective Catalytic Reduction of NO with NH3

 

.

.

.

.

.

251

5.6.11

Oxidation by Non-Reducible Oxides .

.

.

.

.

.

.

.

253

5.7

Heterogeneous Sulfide Catalysts .

.

.

.

.

.

.

.

.

255

5.7.1

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

255

5.7.2

The Sulfide Surface

 

.

.

.

.

.

.

.

.

.

.

.

256

5.7.3

Promoted Sulfide Catalysts .

.

.

.

.

.

.

.

.

.

259

5.8

Summary .

.

.

.

.

.

.

.

.

.

.

.

.

.

262

6Mechanisms for Aqueous Phase Heterogeneous Catalysis and Electrocatalysis. A Comparison with Heterogeneous Catalytic Reactions

6.1

General Introduction

.

.

.

.

.

.

.

.

.

.

.

267

6.2

The Chemistry of Water on Transition-Metal Surfaces

.

.

.

.

268

6.2.1

Reactions in Solutions .

.

.

.

.

.

.

.

.

.

.

268

6.2.2

The Adsorption of Water on Metal Surfaces

 

.

.

.

.

.

.

268

6.2.3

Influence of Potential

.

.

.

.

.

.

.

.

.

.

.

276

6.2.4

Electrochemical Activation of Water .

.

.

.

.

.

.

.

282

6.3

The Synthesis of Vinyl Acetate via the Acetoxylation of Ethylene

 

.

286

6.3.1

Homogeneous Catalyzed Vinyl Acetate Synthesis

.

.

.

.

.

288

6.3.2

Elementary Reaction Steps of Vinyl Acetate in the Liquid Phase .

.

289

6.3.3

VAM Synthesis: Homogeneous or Heterogeneous?

.

.

.

.

.

293

6.4

Low-Temperature Ammonia Oxidation

 

.

.

.

.

.

.

.

294

6.4.1Ammonia Oxidation with Pt2+ Ion-Exchanged Zeolite Catalysts;

 

Catalysis Through Coordination Chemistry

 

.

.

.

.

.

.

300

6.4.2

Electrocatalytic NH3 Oxidation .

.

.

.

.

.

.

.

.

303

6.5

Electrochemical NO Reducton

 

.

.

.

.

.

.

.

.

.

305

6.6

Electrocatalytic Oxidation of CO

 

.

.

.

.

.

.

.

.

306

6.7

Summary .

.

.

.

.

.

.

.

.

.

.

.

.

.

307

 

Addendum: The Tafel Slope and Reaction Mechanism in Electrocatalysis

308

7Mechanisms in Biocatalysis; Relationship with Chemocatalysis

7.1

General Introduction

. . . . . . .

. .

. .

313

7.2

The Mechanism of Enzyme Action; the Induced Fit Model .

. .

315

7.3ATP-Synthase Mechanism; a Rotating Carousel with Multiple Catalytic

Sites .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

320

Соседние файлы в предмете Химия