Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Halogen_Bonding

.pdf
Скачиваний:
26
Добавлен:
08.01.2014
Размер:
4.94 Mб
Скачать

Table 2 (continued)

BAQTOCf

Triphenylphosphine sulfide tris(diiodine)

2.591

 

2.982

 

178.11

 

BA

CEWMOGg

Bis(2-imidazolidinethione) tris(diiodine)

2.580

 

2.984

 

177.67

 

BA

ICUXAGh

2-Thioxo-1,3-dithiole-4-carboxylic acid-S-diiodine hemikis(diiodine)

2.733

 

2.819

 

175.72

 

BA

LOPQEMi

Bis(thiourea-diiodine) diiodine

2.503

 

3.054

 

176.04

 

BA

TPHPSI10j

Bis(S-iodine-triphenylphosphinesulfide) iodine

2.729

 

2.837

 

175.24

 

BA

TURMEYk

Bis(1,3-diisopropylimidazolidine-2,4,5-trithionato)-nickel(II)

2.824

 

2.815

 

177.48

 

BA

 

diiodine

 

 

 

 

 

 

 

 

 

TURMICl

Diiodo-bis(1,3-diisopropylimidazolidine-2,4,5-trithionato)-

2.849

 

2.790

 

178.78

 

BA

 

nickel(II) bis(1,3-diisopropylimidazolidine-2,4,5-trithionato)-

 

 

 

 

 

 

 

 

 

 

nickel(II) diiodine

 

 

 

 

 

 

 

 

 

XOVREFm

Bis(benzimidazole-2-thione-(diiodine)) diiodine dihydrate

2.572

 

2.989

 

176.76

 

BA

XOVROPn

Benzothiazole-2-thione-(diiodine) diiodine

2.588

 

2.969

 

177.79

BA

REFCODE

Compound name

+

˚

+

˚

+

) Mode

BdX (A)

X

· · · X

(A) Bd-X

· · · X

(

LOPQIQ

1,3-Bis(thiourea)triiodonium thiourea-diiodine diiodine triiodide

2.437

 

3.168

 

171.59

 

I

 

 

2.466

 

3.145

 

176.08

 

 

 

 

 

 

 

 

 

 

 

 

 

S· · · I–Br

 

 

˚

 

˚

 

Bd · · ·

 

 

REFCODE

Compound name

 

 

 

 

Mode

Bd · · · Xa (A)

Xa–Y (A)

 

Xa–Y ( )

BIBQUY

1,4,8,11-Tetrathiacyclotetradecane bis(iodobromide)

2.679

 

2.654

 

175.52

 

A

BIBSIO

1,5,9,13-Tetrathiacyclohexadecane tetrakis(iodobromide)

2.617

 

2.705

 

177.64

 

A

 

 

2.687

 

2.645

 

177.59

 

 

BIBSOU

(1,4,7,10,13,16-Hexathiacyclooctadecane) bis(iodobromide)

2.620

 

2.694

 

174.95

 

A

BIMNUG

4,5,-Bis(methylsulfanyl)-1,3-dithiole-2-thione-iodine monobromide

2.589

 

2.714

 

175.62

 

A

DTHIBR10

1,4-Dithiane bis(iodine monobromide)

2.687

 

2.646

 

178.16

 

A

HAMCEE

4,5-Bis(bromomethyl)-1,3-dithiole-2-thione-bromoiodine

2.597

 

2.747

 

178.13

 

A

 

 

2.564

 

2.765

 

176.13

 

 

 

 

 

 

 

 

 

 

 

 

 

Interhalogens and Dihalogens with Bonding Halogen

81

Table 2 (continued)

IPOGUP

4,5-Bis(2-cyanoethanesulfanyl)-1,3-dithiole-2-bromiodothione

2.605

 

2.709

 

177.24

 

 

A

 

(N,N -Dimethylperhydrodiazepine-2,3-dithione)-(iodobromide-S)

2.607

 

2.706

 

177.71

 

 

 

JADYAP

2.574

 

2.752

 

175.90

 

 

A

LOSWEV

Dimethyl 1,3,-dithiole-2-(bromoiodo)thione-4,5-dicarboxylate

2.605

 

2.711

 

178.01

 

 

A

 

iodomonobromide

 

 

 

 

 

 

 

 

 

NAHQOD

Dibenzylthio iodine bromide

2.616

 

2.690

 

174.80

 

 

A

QAQTAE

S-(Bromoiodo)-N,N -dimethylbenzimidazole-2(3H)-thione

2.607

 

2.751

 

173.28

 

 

A

ZZZHUE01

Bromoiodo-triphenylphosphine sulfide

2.665

 

2.668

 

175.08

 

 

A

ZZZHUE02

Bromoiodo-triphenylphosphine sulfide

2.656

 

2.683

 

175.13

 

 

A

S· · · I–Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICUWUZ

Dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate-S-iodine chloride

2.591

 

2.603

 

176.11

 

 

A

LIFXIH

N-Methylbenzothiazole-2(3H)-thione iodine chloride

2.556

 

2.604

 

179.89

 

 

A

NAHQIX

Dibenzylthio iodine chloride

2.575

 

2.558

 

176.14

 

 

A

SIBJOC

Chloroiodo-triphenylphosphine sulfide

2.641

 

2.586

 

174.86

 

 

A

HAMCIIo

4,5-Bis(bromomethyl)-1,3-dithiole-2-thione-chloroiodine

2.534

 

2.761

 

176.57

 

 

BA

 

hemikis(diiodine)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S· · · Br–Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RORNIV

Dimethylsulfide-dibromide

2.299

 

2.717

 

175.05

 

 

A

RORNIV01

Dibromo-dimethyl sulfide

2.328

 

2.705

 

176.05

 

 

A

TEBKIU

1,2,4,5-Tetrakis(ethylthio)benzene bis(dibromine)

2.808

 

2.408

 

171.54

 

 

B

 

 

3.239

 

 

 

164.45

 

 

REFCODE

Compound name

+

˚

+

˚

+

) Mode

BdX (A)

X · · · X

 

(A) B d

X

· · · X (

 

BEMLIO

5-Bromosulfenyl-1,3,2,4-dithiadiazolium tribromide

2.206

 

3.204

 

174.53

 

 

I

FIMDOU

Bromodimethyl sulfide bromide tetrabromodiide

2.260

 

2.969

 

178.67

 

 

I

 

 

 

 

 

 

 

 

 

 

 

82

.al et Pennington .T.W

Table 2 (continued)

YESGUY

1,3-Diisopropyl-4,5-dimethylimidazolium-

 

 

 

 

 

2.167

3.217

155.59

I

 

 

 

2-bromodithiocarboxylate tribromide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a B

d

represents the electron donor; X

a

represents the electron acceptor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFCODE

 

 

˚

 

 

˚

 

 

)

 

 

 

)

 

 

 

Xd

–Xa

(A)

 

Xa

–X (A)

Xa –Xs

· · · Xd

(

Xs · · · Xa

–X

(

 

 

 

bCEWMIA

3.003

 

 

2.849

92.42

 

 

 

177.13

 

 

 

 

 

 

 

c HAMCAA

3.270

 

 

2.747

81.70

 

 

 

175.53

 

 

 

 

 

 

 

dVUTPEF

3.403

 

 

2.736

80.44

 

 

 

176.13

 

 

 

 

 

 

 

eZEBQOM

3.550

 

 

 

 

79.03

 

 

 

 

 

 

 

 

 

 

 

3.453

 

 

2.729

88.39

 

 

 

178.44

 

 

 

 

 

 

 

f BAQTOC

3.373

 

 

2.744

93.02

 

 

 

175.35

 

 

 

 

 

 

 

 

 

 

3.561

 

 

2.710

86.30

 

 

 

178.53

 

 

 

 

 

 

 

 

 

 

3.503

 

 

 

 

82.75

 

 

 

177.27

 

 

 

 

 

 

 

g CEWMOG

3.582

 

 

 

 

86.06

 

 

 

171.24

 

 

 

 

 

 

 

3.475

 

 

2.760

85.12

 

 

 

177.70

 

 

 

 

 

 

 

hICUXAG

3.441

 

 

2.725

80.90

 

 

 

175.50

 

 

 

 

 

 

 

iLOPQEM

3.407

 

 

2.754

84.64

 

 

 

175.20

 

 

 

 

 

 

 

j TPHPSI10

3.570

 

 

2.757

96.30

 

 

 

176.67

 

 

 

 

 

 

 

k TURMEY

3.213

 

 

2.755

93.68

 

 

 

168.98

 

 

 

 

 

 

 

lTURMIC

3.671

 

 

2.786

86.56

 

 

 

176.24

 

 

 

 

 

 

 

mXOVREF

 

 

 

 

 

 

102.09

 

 

 

175.75

 

 

 

 

 

 

 

3.399

 

 

2.767

88.74

 

 

 

176.02

 

 

 

 

 

 

 

n XOVROP

3.423

 

 

2.750

102.71

 

 

 

174.04

 

 

 

 

 

 

 

o HAMCII

3.445

 

 

 

 

78.46

 

 

 

172.26

 

 

 

 

 

 

 

3.257

 

 

2.708

84.67

 

 

 

174.57

 

 

 

 

 

 

 

Interhalogens and Dihalogens with Bonding Halogen

83

Table 3 Geometric parameters for halogen bonded complexes with arsenic and selenium electron donors

As· · · I–I

 

˚

a

˚

 

REFCODE

Compound name

Mode

B d · · · Xa (A)

 

Xa –Y (A)

Bd · · · Xa –Y ( )

FESKAP

Diiodo-triphenylarsane

2.641

 

3.004

174.81

A

FESKAP01

(Triphenylarsine)-diiodine

2.653

 

3.005

174.32

A

FESKAP02

(Triphenylarsine)-diiodine

2.615

 

3.013

180

A

FESKAP10

(Triphenylarsine)-diiodine

2.641

 

3.005

174.79

A

FUTTAP

(Triphenylarsine)-diiodine toluene solvate

2.638

 

3.002

180

A

ZODJOR

Diiodo-trimethyl-arsenic

2.271

 

3.392

180

B

 

 

 

 

 

 

 

As· · · I–Br

 

 

 

 

 

 

CUXCON

(Iodobromo)-triphenyl-arsenic(III)

2.590

 

2.855

174.78

A

 

 

 

 

 

 

 

As· · · Br–Br

 

˚

 

˚

 

REFCODE

Compound name

 

Mode

Ba · · · Xd (A)

 

Xd–Y (A)

Ba · · · Xd–Y ( )

TMASBR01

Dibromo-trimethyl-arsenic

2.275

 

3.363

180

I

 

 

 

 

 

 

 

Se· · · I–I

 

˚

 

˚

 

REFCODE

Compound name

 

Mode

Bd · · · Xa (A)

 

Xa –Y (A)

Bd · · · Xa –Y ( )

DSEIOD

1,4-Diselenane bis(iodine)

2.830

 

2.870

178.67

A

EZOXUM

Bis(tri-t-butylphosphine)-bis(diiodo)-diselenium

2.760

 

2.914

171.69

A

 

(m2-iodo)-bis(tri-t-butylphosphine)-diselenium triiodide

 

 

 

 

 

GIHZIG

Diphenyldiselenide iodine

2.992

 

2.774

174.21

A

HECMOR

Di-t-butyliodophosphane selenidediiodine

2.782

 

2.878

175.84

A

KUWDUB

5,5-Dimethyl-2-selenoimidazolidine-4-one diiodine

2.699

 

2.962

170.73

A

OXSELI

1,4-Oxaselenane iodine

2.755

 

2.955

174.77

A

PAQKAT

Triphenylphosphineselenido-diiodine

2.802

 

2.881

173.67

A

PAQKEX

(Tris(dimethylamino)phosphine)selenide-diiodide

2.721

 

2.965

176.78

A

 

 

2.711

 

2.960

177.35

 

 

 

 

 

 

 

 

84

.al et Pennington .T.W

Table 3 (continued)

PAQKIB

(Tris(diethylamino)phosphine)selenido-diiodide

2.715

2.985

178.05

A

PELHUK

6-Propyl-2-(diiodoseleno)uracil

2.781

2.893

176.75

A

REBNER

Bis(N,N -dimethylimidazolidin-2-yl)-di-selenone

2.683

3.025

175.52

A

 

bis(triiodide) N,N-dimethylimidazolidine-2-selone iodine

 

 

 

 

RIZMES

Dimethyl-selenium diiodine

2.768

2.915

174.31

A

RUQPOI

1,3,5-Triselenacyclohexane diiodine

2.734

2.944

179.31

A

THSEL01

Tetrahydroselenophene iodine

2.765

2.913

179.06

A

YEYFEN

(N-Methyl-1,3-thiazolidine-2(3H)-selenone)-diiodine

2.725

2.983

173.27

A

ZOBDOJ

1,1 -Bis(3-methyl-4-imidazolin-2-selenone)methane

2.716

2.996

175.63

A

 

bis(diiodine)

2.776

2.912

176.86

 

KIGFEL

Bis(2,4,6-triisopropylphenyl) diselenide diiodide

3.483

2.722

169.18

B

 

 

 

 

 

 

REFCODE

Compound name

˚

˚

Mode

Bd · · · Xa (A)

Xa–Y (A)

Bd · · · Xa–Y ( )

RIJQACb

(Tris(dimethylamino)phosphaneselenide)iodine(I) triiodide

2.596

3.215

174.78

AA

RIJQEGc

(Tris(N-morpholyl)phosphane-selenide)iodine(I) triiodide di-iodine

2.590

3.186

172.01

AA

 

 

 

 

 

BA

YEYFOXd

 

2.639

3.071

176.66

AA

 

 

2.639

3.071

176.66

BA

 

 

2.662

3.059

178.84

BA

 

 

2.662

3.059

178.84

BA

 

 

2.720

2.960

171.52

BA

 

 

 

 

 

 

Se· · · I–Br

 

˚

˚

 

REFCODE

Compound name

Mode

Bd · · · Xa (A)

Xa–Y (A)

Bd · · · Xa–Y ( )

NOWLOA

Se,Se-Diphenylselenium bromoiodide

2.808

2.641

177.29

A

NOWLUG

Se,Se-Dimethylselenium bromoiodide

2.664

2.797

175.82

A

WIPPAM

Se-(Bromoiodo)-N-methylbenzothiazole-2-selone

2.636

2.813

177.10

A

 

 

 

 

 

 

Interhalogens and Dihalogens with Bonding Halogen

85

Table 3 (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFCODE

Compound name

 

 

 

 

 

 

 

 

 

 

˚

˚

Bd · · · Xa –Y (

)

Mode

 

 

 

 

 

 

 

 

 

 

Bd · · · Xa (A)

Xa–Y (A)

 

 

YEYFUDe

N-Methylbenzothiazole-2(3H)-selenone-iodine dibromoiodide

 

2.564

 

 

3.129

174.31

 

 

AA

 

Se· · · I–Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFCODE

Compound name

 

 

 

 

 

 

 

 

 

 

˚

˚

Bd · · · Xa –Y (

)

Mode

 

 

 

 

 

 

 

 

 

 

Bd · · · Xa (A)

Xa–Y (A)

 

 

LIGFIQ

N-Methylbenzothiazole-2(3H)-selenone iodinechloride

 

 

 

2.625

 

 

2.690

178.89

 

 

A

 

LIGFIQ01

Se-(Chloroiodo)-N-methylbenzothiazole-2-selone

 

 

 

 

 

2.618

 

 

2.690

178.75

 

 

A

 

OXSEIC

1-Oxa-4-selenacyclohexane iodine monochloride complex

 

 

2.630

 

 

2.731

175.76

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Se· · · Br–Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRABEI

5 : 5 -Tribromo-5, 10 -dibromo-5,10-bromo-

 

 

 

 

 

2.645

 

 

2.358

174.19

 

 

A

 

 

 

 

bis(5,10-selenanthrene) bis(5,5-dibromoselenanthrene)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a B

d

represents the electron donor; X

a

represents the electron acceptor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFCODE

 

˚

 

˚

 

 

)

 

 

)

 

 

 

 

 

 

 

 

X -X (A)

 

X -X (A)

XaX · · · X

d

(

X

· · · X

X

(

 

 

 

 

 

 

 

 

 

 

 

d

a

 

a

s

 

 

s

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bRIJQAC

3.175

 

2.778

80.59

 

 

 

173.44

 

 

 

 

 

 

 

 

 

 

 

cRIJQEG

3.100

 

2.786

89.29

 

 

 

179.35

 

 

 

 

 

 

 

 

 

 

.W

 

 

 

3.338

 

2.754

165.87

 

 

 

174.43

 

 

 

 

 

 

 

 

 

 

dYEYFOX

3.155

 

2.746

85.46

 

 

 

178.25

 

 

 

 

 

 

 

 

 

 

.T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pennington

 

 

 

3.670

 

2.762

73.95

 

 

 

165.11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.341

 

2.762

117.98

 

 

 

173.28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.525

 

2.764

97.20

 

 

 

176.44

 

 

 

 

 

 

 

 

 

 

 

eYEYFUD

3.380

 

2.764

108.99

 

 

 

176.48

 

 

 

 

 

 

 

 

 

 

et

2.803

 

2.645

89.27

 

 

 

175.37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.al

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Halogen Bonding with Dihalogens and Interhalogens

87

Fig. 2 Structures illustrating bonding modes from Fig. 1. a PAQKIB, mode A; b DOXABR, mode B; c HAMCAA, mode AA; d QARGIZ, mode BA

reduced. This mode is illustrated in Fig. 2b for the dioxane complex of dibromine (DOXABR), in which interactions at either end of the Br2 molecule with oxygen electron donors of two different dioxane molecules result in an extended donor–acceptor chain.

For some strong electron donor molecules the polarization of the X2 molecule may be sufficient that the X atom not complexed to B serves as an electron donor to a second X2 molecule, i.e., the dihalogen is “amphoteric”, acting as a Lewis acid to Lewis base B, and as a Lewis base to the second X2 molecule, acting as a Lewis acid. For a 1 : 1 B · X2 : X2 ratio, an extended adduct (Fig. 1, mode AA) is formed, as illustrated in Fig. 2c for 4,5- bis(bromomethyl)-1,3-dithiole-2-thione-diiodine diiodine (HAMCAA) [58]. This is often referred to as an “extended spoke” structure. If the second X2 acts as Lewis acid acceptor at either end of the molecule, then a bridged amphoteric adduct (Fig. 1, mode BA) is formed, as illustrated for (acridine · I2)2 · I2 (QARGIZ) [31] in Fig. 2d.

2.2

Nitrogen and Oxygen Electron Donors

Second only to sulfur-based systems, nitrogen complexes are relatively well represented in the structural literature with 41 complexes reported. Of these, 25 are with I2 as the electron acceptor, 11 are with the interhalogen ICl, three are with Br2, and two are with IBr. As expected, in every case the halogen bond forms between the nitrogen and the softest halogen atom, i.e., iodine, in all of the complexes except those with dibromine. Most N · I2 complexes, and all N · Br2, N · IBr, and N · ICl complexes are simple adducts, mode A. Exceptions for the diiodine complexes include: bridging mode (B) observed for diazines, such as pyrazine [86], tetramethylpyrazine [86], phenazine, and quinoxaline [87], and for 9-chloroacridine [89] and the 1 : 1 complex of diiodine with hexamethylenetetramine [144]; and amphoteric bridging mode (BA) observed for 2,2 -bipyridine [85], acridine [89], 9-chloroacridine [89], and 2,3,5,6-tetra-2 -pyridylpyrazine [91]. The occurrence of both B and BA complexes with 9-chloroacridine, and of B and A complexes and an

88

W.T. Pennington et al.

ionic salt [145] for tetramethylenetetramine, highlights the obvious difficulty in predicting which mode will be favored for a given donor–acceptor pair.

Oxygen complexes with dihalogens are relatively rare, with only eight complexes known, and none of these involves interhalogens. Diiodine and dibromine complexes are equally represented with four and three known examples of each, respectively, and one dichlorine complex is known. It should be pointed out that this complex, dioxane dichlorine [41], is the only halogen bonded complex of dichlorine that has been structurally characterized. As opposed to those observed for nitrogen, all of the oxygen complexes except one crystallize with bridging dihalogens (mode B). The sole exception is a relatively complex manganese formate salt, in which an I2 molecule interacts as a simple adduct [146].

2.3

Phosphorus and Sulfur Electron Donors

True halogen bonded complexes with phosphorus as the electron donor atom are even more rare than those with oxygen, and all of these involve diiodine as the electron acceptor. Three examples of simple adducts and one with a bridging diiodine were found. All other phosphorus halogen complexes are better described as salts with ion pairs closely associated through X· · ·X interactions. One bromo- (JOMSEJ) and two iodo salts (SORPUK and ZEKMOR) are related to simple adduct (mode A, Eq. 1) complexes, in which the P· · ·X interaction has strengthened to a covalent bond, while the X–X bond has weakened to the point of being an interaction. Likewise, one bromo- (SUHJIO) and five iodo- (LOBKOC, LOBKUI, LOBLAP, FILTEZ, and FILTID) salts with trihalide anions can be considered as coming from extended adducts (mode AA, Eq. 2).

Equation 1

Equation 2

With 112 structurally characterized complexes, sulfur-based electrons are by far the most commonly encountered. This is attributed to its importance in antithyroid drugs, as described above. The majority of these complexes

Halogen Bonding with Dihalogens and Interhalogens

89

(87) have diiodine-based electron acceptors, but all of the halogens and interhalogens except for dichlorine are represented. Of the diiodine complexes, 60 are simple adducts, 17 are bridging, four are extended adducts, and nine are bridged extended adducts. One ionic salt is included (LOPQIQ) due to the presence of a simple adduct structure in the asymmetric unit in addition to two iodonium cations closely linked to one I3and an additional discrete I3anion. All of the interhalogen IBr complexes are simple adducts, as are all of the ICl complexes, except one (HAMCII) [59] which is a bridged extended adduct, with the chlorine atoms acting as Lewis base donors to a bridging I2 molecule. Two of the three known Br2 complexes are simple adducts, while the third is bridging. In addition, three bromo salts are known, two with S Br+ cations and Br3anions (BEMLIO and YESGUY), and one with bis-donor-iodonium cations and an I· · ·I2· · ·Ianion (FIMDOU).

2.4

Arsenic and Selenium Electron Donors

Few arsenic based complexes have been characterized. Three sets of structural data (FESKAP, FESKAP01, FESKAP02), a set for a second polymorph (FESKAP10), and a set for a toluene solvate (FUTTAP) have been reported for triphenylarsine·I2 , and all are simple adducts, as is the same electron donor complexed with the interhalogen IBr (CUXCON). For trimethylarsine, on the other hand, two electron donors are bridged by a single diiodine (ZODJOR), but with dibromine a simple ionic salt, Me3AsBr+ · · · Br(TMASBR01), is formed.

Like sulfur, selenium based electron donors are heavily studied due to their potential as antithyroid agents. Of the 28 complexes reported, the majority (20) are diiodine based, and most of these (16) are simple adducts. One diiodine complex is bridged, one contains only extended adducts, one contains only bridged adducts, and one contains both bridged and extended adducts. All of the interhalogen complexes are simple adducts except one with iodine monobromine, which forms an extended adduct.

In addition to halogen bonded complexes or ionic salts, it is also possible for sulfur and selenium electron donors to form complexes in which the electron donor atom inserts into the X2 bond, giving a hypervalent donor atom with a T-shaped geometry. It has been recently reported [147] that for dibromine and selenium, this type of complex is favored over halogen bonded complexes. While no purely halogen bonded complex is reported for dibromine, there is one complex (IRABEI) in which one selenium atom of each of several selenanthrene molecules in the asymmetric unit does insert into a Br2 bond, but for one of the molecules, the other selenium atom forms a halogen bond with a Br2 molecule to form a simple adduct (A).

90

W.T. Pennington et al.

3

Computation Studies

3.1

General Observations

The Lewis dot formalism shows any halogen in a molecule surrounded by three electron lone pairs. An unfortunate consequence of this perspective is that it is natural to assume that these electrons are equivalent and symmetrically distributed (i.e., that the iodine is sp3 hybridized). Even simple quantum mechanical calculations, however, show that this is not the case [148]. Consider the diiodine molecule in the gas phase (Fig. 3). There is a region directly opposite the I–I sigma bond where the nucleus is poorly shielded by the atoms’ electron cloud. Allen described this as “polar flattening”, where the effective atomic radius is shorter at this point than it is perpendicular to the I–I bond [149]. Politzer and coworkers simply call it a “sigma hole” [150, 151]. This area of positive electrostatic potential also coincides with the LUMO of the molecule (Fig. 4).

Fig. 3 The electron density map (0.002 au contour) for diiodine, colored by the electrostatic potential. Red is the most negative potential and blue is the most positive

Fig. 4 The lowest unoccupied molecular orbital for diiodine

The sigma hole is the key to understanding halogen bonding. Based upon the crystallographic and spectral data presented in the literature and the computational studies outlined below, the following generalizations may be made:

Соседние файлы в предмете Химия