Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
140
Добавлен:
16.03.2016
Размер:
106.5 Кб
Скачать

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

Одним из важнейших «объектов» изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц за­дается с помощью так называемых чисел заполнения Ni — чисел, указывающих сте­пень заполнения квантового состояния (характеризуется данным набором i кван­товых чисел) частицами системы, состоя­щей из многих тождественных частиц. Для систем частиц, образованных бозона­ми — частицами с нулевым или целым

спином (см. § 226), числа заполнения мо­гут принимать любые целые значения: О, 1, 2, ... (см. § 227). Для систем частиц, обра­зованных фермионами — частицами с по­луцелым спином (см. § 226), числа запол­нения могут принимать лишь два значе­ния: 0 для свободных состояний и 1 для занятых (см. § 227). Сумма всех чисел за­полнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения <Ni>.

Идеальный газ из бозонов — бозе-газ — описывается квантовой статистикой Бозе — Эйнштейна. Распределение бозо­нов по энергиям вытекает из так называе­мого большого канонического распределе­ния Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым (см. § 227):

Это распределение называется распреде­лением Бозе — Эйнштейна. Здесь <Ni> — среднее число бозонов в квантовом со­стоянии с энергией Ei, k постоянная Больцмана, Т — термодинамическая тем­пература,  — химический потенциал;  не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех <Ni> равна полному числу частиц в системе. Здесь 0, так как иначе среднее число частиц в данном квантовом состоянии отрица­тельно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов — ферми-газ — описывается квантовой стати­стикой Ферми — Дирака. Распределе-

379

ние фермионов по энергиям имеет вид

где <Ni>—среднее число фермионов в квантовом состоянии с энергией Ei,  — химический потенциал. В отличие от (235.1)  может иметь положительное значение (это не приводит к отрицатель­ным значениям чисел <Ni>). Это распреде­ление называется распределением Фер­ми — Дирака.

(Ei-)/(kT)

Если е(Ei-)/(kT)>>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:

(ср. с выражением (44.4)), где

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Система частиц называется вырожден­ной, если ее свойства существенным обра­зом отличаются от свойств систем, под­чиняющихся классической статистике. По­ведение как бозе-газа, так и ферми-газа отличается от классического газа, они яв­ляются вырожденными газами. Вырожде­ние газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения на­зывается величина А. При А <<1, т. е. при малой степени вырождения, распределе­ния Бозе — Эйнштейна (235.1) и Фер­ми — Дирака (235.2) переходят в класси­ческое распределение Максвелла — Боль­цмана (235.3).

Температурой вырождения То называ­ется температура, ниже которой отчетливо проявляются квантовые свойства идеаль­ного газа, обусловленные тождественно­стью частиц, т. е. Т0температура, при которой вырождение становится су­щественным. Если T>>T0, то поведение системы частиц (газа) описывается клас­сическими законами.

Соседние файлы в папке Трофимова Курс физики