Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции Электроника. Трофименко Е.Н / свойсва р-п перехода

.doc
Скачиваний:
69
Добавлен:
19.03.2016
Размер:
50.69 Кб
Скачать

Лекция 3. Биполярные транзисторы

1. P- N- переход как основа полупроводниковых диодов и транзисторов

P-n-переход в отсутствие внешнего напряжения

В основе большинства полупроводниковых диодов и транзисторов лежит контакт двух полупроводников с различным типом электропроводности. Такой контакт называют электронно-дырочным переходом или p-n-переходом. Он может быть получен, например, путем диффузии донорной примеси в полупроводник p-типа. Идеализированная одномерная структура p-n-перехода изображена на рис. 2.1,а.

Включенный в электрическую цепь p-n-переход обладает односторонней проводимостью, то есть его вольтамперная характеристика нелинейна. Рассмотрим физические процессы в структуре, определяющие нелинейные свойства p-n-перехода.

Для простоты будем полагать, что концентрация легирующей примеси в областях n- и p- типа распределена равномерно, причем концентрация донорной примеси ND в n-полупроводнике значительно больше, чем концентрация акцепторной примеси NA в p- полупроводнике (ND>>NA). Назовем n-область с большей концентрацией примеси эмиттером, а p-область с меньшей концентрацией примеси  - базой. Это допущение позволяет считать, что полный ток через p-n-переход определяется преимущественно электронной составляющей. Дырочная составляющая тока через p-n-переход мала и ею можно пренебречь:

i = in + ip in.

Будем полагать, что внешние контакты к структуре ( они по своей природе должны иметь двустороннюю проводимость с очень малым сопротивлением ) удалены от контакта (сечение x0 рис. 2.1) на расстояние, значительно превышающее диффузионную длину электронов Ln  в базе и дырок Lp в эмиттере. Это допущение позволяет считать, что собственно p-n-переход локализован вблизи границы x0. Обозначим границы p-n-перехода через xn и xp.

Распределение концентрации электронов вдоль оси x показано на рис. 2.1,б. Так как концентрация электронов в n-полупроводнике nn (основные носители заряда) значительно превышает концентрацию электронов в p-полупроводнике np (неосновные носители заряда), то в плоскости контакта возникает диффузия электронов из n-области в p-область. Аналогичные рассуждения приводят к диффузии дырок из p-области в n-область. Таким образом через p-n-переход протекают диффузионные потоки основных носителей заряда (ПОНЗ).

Уходя из полупроводника n-типа, электроны оставляют в приконтактной области n-полупроводника нескомпенсированный положительный неподвижный заряд ионов доноров QD+. Аналогично в приконтактной области p-полупроводника появляется равный по величине нескомпенсированный отрицательный неподвижный заряд ионов акцепторов QA-. На рисунке 2.1,б соответствующие области заштрихованы и обозначены.

Таким образом в области контакта появляется встроенное электрическое поле локализованное вблизи границы x0. Будем характеризовать его контактной разностью потенциалов K0.

Возникшее поле препятствует движению основных носителей через переход и является причиной появления встречного дрейфового движения электронов из p-области в n-область.

Таким образом, потоки неосновных носителей заряда (ПННЗ) по своей природе являются дрейфовыми. Распределение потенциала в структуре приведено на рис. 2.1,в.

Состояние термодинамического равновесия устанавливается при равенстве потоков основных и неосновных носителей заряда ПОНЗ = ПННЗ, при этом p-n-переход характеризуется следующими параметрами: контактная разность потенциалов φK0  и ширина области пространственного заряда (или ширина p-n-перехода) 0. Можно показать  ,что:

  ;     (2.1)

 .      (2.2)

Анализ выражений (2.1) и (2.2) показывает, что параметры перехода зависят от температуры и концентрации легирующей примеси в n и p - областях.

Увеличение температуры приводит к уменьшению контактной разности потенциалов φK0 и ширины p-n-перехода 0. Это, в первую очередь, определяется тем, что, как показано  разд. 1, при высоких температурах уровни Ферми в n- и p-полупроводниках приближаются к середине запрещенной зоны, электропроводность полупроводников стремится к собственной, а, следовательно, p-n-переход исчезает  (φK00, 00). В уравнениях  (2.1) и (2.2)  эту зависимость определяет член ni2(T).

При возрастании концентрации легирующих примесей ND и NA  контактная разность потенциалов возрастает , а ширина p-n-перехода уменьшается.

Встроенное электрическое  поле в p-n- переходе определяется зарядом неподвижных ионов примеси, при этом суммарный заряд структуры равен нулю: QD+ = QA, то есть

S·q·ND·n = S·q·NA· p ,        (2.3)

где  S - площадь p-n-перехода; n , p - протяженность p-n-перехода соответственно в областях n- и p-типа. Преобразуем (2.3) с учетом ND>>NA.

 (2.4)

Из (2.4) следует ,что  p-n-переход большей своей частью лежит в базе.

Необходимо отметить, что область p-n-перехода обеднена подвижными носителями заряда, так как любой, возникший в этой области или попавший в нее, подвижный заряд выталкивается из  области перехода электрическим полем. Поэтому сопротивление p-n-перехода значительно выше, чем сопротивление n-  и p- областей.

Подведем итог. Причиной нелинейных свойств p-n-перехода является существующее в переходе встроенное электрическое поле.

Для основных носителей заряда это поле создает потенциальный барьер, а, следовательно, величина потока основных носителей заряда через переход зависит от величин этого барьера (φK).

Для неосновных носителей заряда поле в переходе создает потенциальную яму, а, следовательно, поток неосновных носителей заряда не будет зависеть от глубины потенциальной ямы (φK ): все электроны (неосновные носители), появившиеся у края потенциальной ямы, упадут в нее.

Поле в p-n-переходе можно изменить путем подачи на структуру внешнего напряжения. Если полярность внешнего напряжения направлена против поля в переходе, то тормозящее для ОНЗ поле в переходе ( или потенциальный барьер), уменьшается, и поток основных носителей заряда через p-n- переход увеличивается и значительно превышает существующий поток неосновных носителей. Такое напряжение на p-n-переходе называется прямым.

Если полярность внешнего напряжения U совпадает с полярностью контактной разности потенциалов φK0, суммарное тормозящее для ОНЗ поле в переходе возрастает, что приводит к уменьшению ПОНЗ через переход. Такое внешнее напряжение на p-n-переходе называется обратным.

Необходимо еще раз повторить, что в том и другом случае ПННЗ не зависит от глубины потенциальной ямы, а, следовательно, протекающий через p-n-переход ток неосновных носителей заряда не зависит от приложенного внешнего напряжения.

Использование полупроводников в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где VT — термодинамическое напряжение, Nn — концентрация электронов, Np — концентрация дырок, ni — собственная концентрация [2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор. Биполярный транзистор используют для усиления электрического тока.