Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
84
Добавлен:
25.03.2016
Размер:
139.78 Кб
Скачать

Глава 11 Первичные сети

Первичные сети предназначены для создания коммутируемой инфраструктуры, с помощью которой можно достаточно быстро создать постоянные каналы, организующие произвольную топологию.

В первичных сетях используют технику коммутации каналов различного типа: с частотным (FDM), временным (TDM) и волновым (WDM/DWDM) мультиплексированием.

В сетях FDM каждому абонентскому каналу выделяется полоса частот шириной 4 кГц. Существует иерархия каналов FDM, при этом 12 абонентских каналов образуют группу каналов первого уровня иерархии (базовую группу) с полосой 48 кГц, 5 каналов первого уровня объединяются в канал второго уровня иерархии (супергруппу) с полосой 240 кГц, а 10 каналов второго уровня составляют канал третьего уровня иерархии (главную группу) с полосой в 2,4 мГц.

Цифровые первичные сети PDH позволяют образовывать каналы с пропускной способностью от 64 Кбит/с до 140 Мбит/с, предоставляя своим абонентам скорости четырех уровней иерархии.

Недостатком сетей PDH является невозможность непосредственного выделения данных низкоскоростного канала из данных высокоскоростного канала, если каналы работают на несмежных уровнях иерархии скоростей.

Асинхронность ввода абонентских потоков в кадр SDH обеспечивается благодаря концепции виртуальных контейнеров и системы плавающих указателей, отмечающих начало пользовательских данных в виртуальном контейнере.

Мультиплексоры SDH могут работать в сетях с различной топологией: цепи, кольца, ячеистой топологией. Различают несколько специальных типов мультиплексоров, которые занимают специфическое место в сети: терминальные мультиплексоры, мультиплексоры ввода-вывода, кросс-коннекторы.

В сетях SDH поддерживается большое количество механизмов отказоустойчивости, которые защищают трафик данных на уровне отдельных блоков, портов или соединений: EPS, CP, MSP, SNC-P и MS-SPRing. Наиболее эффективная схема защиты выбирается в зависимости от логической топологии соединений в сети.

Технология WDM/DWDM реализует принципы частотного мультиплексирования для сигналов иной физической природы и на новом уровне иерархии скоростей. Каждый канал WDM/DWDM представляет собой определенный диапазон световых волн, позволяющих переносить данные в аналоговой и цифровой форме, при этом полоса пропускания канала в 25-50-100 ГГц обеспечивает скорости в несколько гигабит в секунду (при передаче дискретных данных).

В ранних системах WDM использовалось небольшое количество спектральных каналов, от 2 до 16. В системах DWDM задействовано уже от 32 до 160 каналов на одном оптическом волокне, что обеспечивает скорости передачи данных для одного волокна до нескольких терабит в секунду.

Современные оптические усилители позволяют удлинить оптический участок линии связи (без преобразования сигнала в электрическую форму) до 700-1000 км.

Для выделения нескольких каналов из общего светового сигнала разработаны сравнительно недорогие устройства, которые обычно объединяются с оптическими усилителями для организации мультиплексоров ввода-вывода в сетях дальней связи.

Для взаимодействия с традиционными оптическими сетями (SDH, Gigabit Ethernet, 10G Ethernet) в сетях DWDM применяются транспондеры и трансляторы длин волн, которые преобразуют длину волны входного сигнала в длину одной из волн стандартного частотного плана DWDM.

В полностью оптических сетях все операции мультиплексирования и коммутации каналов выполняются над световыми сигналами без их промежуточного преобразования в электрическую форму. Это упрощает и удешевляет сеть.

Соседние файлы в папке olifer_v_g_olifer_n_a_kompyuternye_seti_principy_tehnologii