Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
47
Добавлен:
25.03.2016
Размер:
401.41 Кб
Скачать

Персональные сети и технология Bluetooth

Список ключевых слов: персональная сеть, технология Bluetooth, пикосеть, главное устройство пикосети, подчиненное устройство пикосети, рассредоточенная сеть, синхронный канал, ориентированный на соединение, асинхронный канал, не ориентированный на соединение, профиль, уровень физических радиосигналов, уровень базового диапазона частот, диспетчер каналов, уровень протокола адаптации для управления логическим каналом, аудиоуровень, уровень управления, поле данных, код доступа, заголовок кадра.

Особенности персональных сетей

Персональные сети (Personal Area Networks, PAN) предназначены для взаимодействия устройств, принадлежащих одному владельцу, на небольшом расстоянии, обычно в радиусе 10 м. Такими устройствами могут быть ноутбук, мобильный телефон, принтер, карманный компьютер PDA (Personal Digital Assistant), телевизор, а также многочисленные бытовые приборы, например холодильник.

Персональные сети должны обеспечивать как фиксированный доступ, например, в пределах дома, так и мобильный, когда владелец устройств перемещается вместе с ними между помещениями или городами.

Персональные сети во многом похожи на локальные, но у них есть и свои особенности.

  • Многие из устройств, которые могут входить в персональную сеть, гораздо проще, чем традиционный узел LAN — компьютер. Кроме того, такие устройства обычно имеют небольшие габариты и стоимость. Поэтому в стандартах PAN требуется учитывать, что их реализация должна приводить к недорогим решениям, потребляющим небольшую энергию.

  • Область покрытия PAN меньше области покрытия LAN, для взаимодействия узлов PAN часто достаточно нескольких метров.

  • Высокие требования к безопасности. Персональные устройства, путешествуя вместе со своим владельцем, попадают в различное окружение. Иногда они должны взаимодействовать с устройствами других персональных сетей, например, если их владелец встретил на улице своего знакомого и решил переписать из его устройства PDA в свое несколько адресов общих знакомых. В других случаях такое взаимодействие явно нежелательно, так как может привести к утечке конфиденциальной информации. Поэтому протоколы PAN должны обеспечивать разнообразные методы аутентификации устройств и шифрования данных в мобильной обстановке.

  • При соединении малогабаритных устройств между собой желание избавиться от кабелей проявляется гораздо сильнее, чем при соединении компьютера с принтером или концентратором. Из-за этого персональные сети в гораздо большей степени тяготеют к беспроводным решениям, чем локальные.

  • Если человек носит PAN-устройство постоянно с собой и на себе, то оно не должно причинять вред его здоровью. Поэтому такое устройство должно излучать сигналы небольшой мощности, желательно не более 100 мВт (обычный сотовый телефон излучает сигналы мощностью от 600 мВт до 3 Вт).

Сегодня самой популярной технологией PAN является Bluetooth, которая обеспечивает взаимодействие 8 устройств в разделяемой среде диапазона 2,4 МГц со скоростью передачи данных до 723 Кбит/с.

Архитектура Bluetooth

Стандарт Bluetooth разработан группой Bluetooth SIG (Bluetooth Special Interest Group), которая была организована по инициативе компании Ericsson. Стандарт Bluetooth также адаптирован рабочей группой IEEE 802.15.1 в соответствии с общей структурой стандартов IEEE 802.

В технологии Bluetooth используется концепция пикосети. Название подчеркивает небольшую область покрытия, от 10 до 100 м, в зависимости от мощности излучения передатчика устройства. В пикосеть может входить до 255 устройств, но только 8 из них могут в каждый момент времени быть активными и обмениваться данными. Одно из устройств в пикосети является главным, остальные — подчиненными (рис. 14.14).

Активное подчиненное устройство может обмениваться данными только с главным устройством, прямой обмен между подчиненными устройствами невозможен. Все подчиненные устройства данной пикосети, кроме семи активных, должны находится в режиме пониженного энергопотребления, в котором они только

периодически прослушивают команду главного устройства для перехода в активное состояние.

Главное устройство отвечает за доступ к разделяемой среде пикосети, которая представляет собой нелицензируемые частоты диапазона 2,4 ГГц. Разделяемая среда передает данные со скоростью 1 Мбит/с, но из-за накладных расходов на заголовки пакетов и смену частот полезная скорость передачи данных в среде не превышает 777 Кбит/с. Пропускная способность среды делится главным устройством между семью подчиненными устройствами на основе техники TDM.

Рис. 14.14. Пикосеть и рассредоточенная сеть

Такая архитектура позволяет применять более простые протоколы в устройствах, выполняющих функции подчиненных (например, в радионаушниках), и отдает более сложные функции управления пикосетью компьютеру, который, скорее всего, будет главным устройством этой сети.

Присоединение к пикосети происходит динамически. Главное устройство пикосети, используя процедуру опроса, собирает информацию об устройствах, которые попадают в зону его пикосети. После обнаружения нового устройства главное устройство проводит с ним переговоры. Если желание подчиненного устройства присоединиться к пикосети совпадает с решением главного устройства (подчиненное устройство прошло проверку аутентичности и оказалось в списке разрешенных устройств), то новое подчиненное устройство присоединяется к сети.

Примечание. Безопасность сетей Bluetooth обеспечинается за счет аутентификации устройств и шифрования передаваемого трафика. Протоколы Bluetooth обеспечивают более высокий уровень защиты, чем протокол WEP стандарта IEEE 802.11.

Несколько пикосетей, которые обмениваются между собой данными, образуют рассредоточенную сеть. Взаимодействие в пределах рассредоточенной сети осуществляется за счет того, что один узел (называемый мостом) одновременно является членом нескольких пикосетей, причем этот узел может исполнять роль главного устройства одной пикосети и подчиненного устройства другой.

Для того чтобы сигналы разных пикосетей не интерферировали, каждое главное устройство использует собственную последовательность псевдослучайной перестройки частоты. Использование отличающихся последовательностей псевдослучайной перестройки частоты затрудняет общение пикосетей между собой. Для преодоления этой проблемы устройство, играющее роль моста, должно при подключении к каждой из пикосетей соответствующим образом менять частоту.

Коллизии, хотя и с очень небольшой вероятностью, все же могут происходить, когда два или более устройства из разных пикосетей выберут для работы один и тот же частотный канал.

Как видно из описания, рассредоточенная сеть реализует метод доступа CDMA на основе техники FHSS. Для надежной передачи данных в технологии Bluetooth может выполняться прямая коррекция ошибок FEC, а получение кадра подтверждается с помощью квитанций.

Сети Bluetooth используют разные методы для передачи информации двух типов.

  • Для чувствительного к задержкам трафика (например, голоса) сеть поддерживает синхронный канал, ориентированный на соединение (Synchronous Connection-Oriented link, SCO), работающий со скоростью 64 Кбит/с, Для канала SCO пропускная способность резервируется на все время соединения.

  • Для эластичного трафика (например, компьютерных данных) используется работающий с переменной скоростью асинхронный канал, не ориентированный на соединение (Asynchronous Connection-Less link, ACL). Для канала ACL пропускная способность выделяется по запросу подчиненного устройства или по потребности главного устройства.

Стек протоколов Bluetooth

Bluetooth является законченной оригинальной технологией, рассчитанной на самостоятельное применение в электронных персональных устройствах. Поэтому эта технология поддерживает полный стек протоколов, включая собственные прикладные протоколы. В этом заключается ее отличие от рассмотренных ранее технологий, таких как Ethernet или IEEE 802.11, которые выполняют только функции физического и канального уровней.

Создание для технологии Bluetooth собственных прикладных протоколов объясняется стремлением разработчиков реализовывать ее в разнообразных простых

устройствах, которым не под силу, да и не к чему поддерживать стек протоколов TCP/IP. Кстати, технология Bluetooth появилась в результате попыток разработать стандарт для взаимодействия мобильного телефона с беспроводными наушниками. Понятно, что для решения такой простой задачи не нужен ни протокол передачи файлов (FTP), ни протокол передачи гипертекста (HTTP). В результате для технологии Bluetooth был разработан оригинальный стек протоколов, в дополнение к которому появилось большое количество профилей.

Профили определяют конкретный набор протоколов для решения той или иной задачи. Например, существует профиль для взаимодействия компьютера или мобильного телефона с беспроводными наушниками. Имеется также профиль для тех устройств, которые могут передавать файлы (наушникам он, скорее всего, не потребуется, хотя будущее предвидеть сложно), профиль эмуляции последовательного порта RS-232 и т. д.

При приведении стандартов Bluetooth в соответствие к архитектуре стандартов IEEE 802 рабочая группа 802.15.1 ограничилась только так называемыми протоколами ядра Bluetooth, которые соответствуют функциям физического уровня и уровня MAC (рис. 14.15).

Рис. 14.15. Соответствие протоколов Bluetooth модели OSI и стандартам IEEE 802

  • Уровень физических радиосигналов описывает частоты и мощности сигналов, используемых для передачи информации.

  • Уровень базового диапазона частот отвечает за организацию каналов передачи данных в радиосреде. В его обязанности входят выбор последовательности псевдослучайной перестройки частоты, синхронизация устройств в сети, формирование и передача кадров по установленным каналам SCO и ACL. Кадр Bluetooth имеет переменную длину, поле данных может содержать от 0 до 2744 бит (343 байт). Для передачи голоса используются кадры фиксированного размера с полем данных 240 бит (30 байт).

  • Диспетчер каналов отвечает за аутентификацию устройств и шифрование трафика, а также управляет статусом устройств, то есть может сделать подчиненное устройство главным, и наоборот.

  • Уровень протокола адаптации для управления логическим каналом (Logical Link Control Adaptation Layer, L2CAP) является верхним уровнем протоколов ядра Bluetooth. Этот протокол используется только в тех случаях, когда устройство передает данные, голосовой трафик обходит этот протокол и обращается непосредственно к уровню базового диапазона частот. Уровень L2CAP принимает от протоколов верхнего уровня сегменты данных размером до 64 Кбайт и делит их на небольшие кадры для уровня базового диапазона частот. При приеме уровень L2CAP собирает кадры в исходный сегмент и передает протоколу верхнего уровня.

  • Аудиоуровень обеспечивает передачу голоса по каналам SCO. На этом уровне применяется импульсно-кодовая модуляция (РСМ), что определяет скорость голосового канала в 64 Кбит/с.

  • Уровень управления передает внешнему блоку информацию о состоянии соединений и принимает от внешнего блока команды, изменяющие конфигурацию и состояние соединений.

Кадры Bluetooth

Разделяемая среда представляет собой последовательность частотных каналов технологии FHSS в диапазоне 2,4 ГГц. Каждый частотный канал имеет ширину 1 МГц, количество каналов равно 79 (в США и большинстве других стран мира) или 23 (в Испании, Франции, Японии).

Чиповая скорость равна 1600 Гц, поэтому период чипа составляет 625 мкс. Главное устройство разделяет общую среду на основе временного мультиплексирования (TDM), используя в качестве тайм-слота время пребывания системы на одном частотном канале, то есть 625 мкс. Информация кодируется с тактовой частотой 1 МГц путем двоичной частотной манипуляции (BFSK), в результате битовая скорость составляет 1 Мбит/с. В течение одного тайм-слота пикосеть Bluetooth передает 625 бит, но не все они используются для передачи полезной информации. При смене частоты устройствам сети требуется некоторое время для синхронизации, поэтому из 625 бит только 366 передают кадр данных.

Кадр данных может занимать 1, 3 или 5 слотов. В том случае, когда кадр занимает больше одного слота, частота канала остается неизменной в течение всего времени передачи кадра. В этом случае накладные расходы на синхронизацию меньше, так что размер кадра, состоящего, например, из 5 последовательных слотов,

равен 2870 бит (с полем данных до 2744 бит).

Внимание. Составными могут быть только кадры данных (то есть кадры канала ACL), а кадры, переносящие голос (кадры канала SCO), всегда состоят из одного слота.

Рассмотрим формат кадра, состоящего из одного слота — 366 бит (рис. 14.16):

  • Поле данных занимает 240 бит.

  • Код доступа (72 бита) используется для идентификации пикосети. Каждое Bluetooth-устройство имеет глобально уникальный 6-байтовый адрес, поэтому для идентификации пикосети используется три младших байта уникального адреса главного устройства. Каждое устройство при формировании кадра помещает эти байты в поле кода доступа, дополняя их битами 1/3 для прямой коррекции ошибок (сокращение 1/3 говорит о том, что 1 бит информации преобразуется в 3 бита кода). Если главное или подчиненное устройство получает кадр, содержащий неверный код доступа, то оно отбрасывает этот кадр, считая, что он, скорее всего, получен из другой пикосети.

  • Заголовок кадра (54 бита) содержит МАС-адрес, однобитовой признак подтверждения приема кадра, тип кадра, а также ряд признаков. МАС-адрес состоит из трех битов, это временный адрес одного их семи подчиненных устройств, при этом адрес 000 является широковещательным. Информация заголовка также передается с помощью битов 1/3 алгоритма FEC.

Рис. 14.16. Формат кадра Bluetooth, состоящего из одного слота

Формат кадра, состоящего из трех или пяти слотов, отличается только размером поля данных. Информация, помещаемая в поле данных, может кодироваться с помощью битов 1/3 или 2/3 алгоритма FEC либо передаваться вообще без прямой коррекции ошибок FEC.

Пример работы технологии Bluetooth

Рассмотрим работу пикосети на примере. Пусть пикосеть состоит из главного и трех активных подчиненных устройств. Для упрощения предположим, что все устройства используют кадры, занимающие один слот. На рис. 14.17 показано, каким образом главное устройство распределяет слоты между членами пикосети.

Для дуплексного обмена главное устройство всегда выделяет каждому каналу пару слотов: первый слот используется для передачи данных от главного устройства к подчиненному, а второй — в обратном направлении.

В примере, показанном на рисунке, существует один канал SCO между главным устройством и первым подчиненным устройством. Как мы уже знаем, каналам SCO всегда выделяется фиксированная часть пропускной способности среды, величина которой зависит от того, каким образом будет использоваться метод прямой коррекции ошибок (FEC) голосовой информации.

Рис. 14.17. Разделение среды

  • Если алгоритм FEC не применяется, то для канала SCO выделяется каждая третья пара слотов, как это и показано на рисунке. Такое распределение слотов обеспечивает передачу 64 Кбит/с потоков в каждом направлении. Убедимся в этом. Кодек РСМ оцифровывает голос с частотой 8 кГц (период 125 мкс), представляя каждый замер одним байтом. Каждый кадр переносит 30 байт (240 бит), то есть 30 замеров. Кадры канала SCO в одном направлении повторяются через каждые 6 слотов, поэтому период повторения кадров равен 6 х 625 = 3750 мкс. Соответственно, скорость передачи данных в канале SCO (в одном направлении) равна 240/(3750 х 10-6) = 64 Кбит/с.

  • В том случае, когда используются биты 2/3 алгоритма FEC, то в поле данных кадра размещается не 30, а 20 замеров, поэтому для обеспечения скорости 64 Кбит/с такому каналу SCO нужно выделять каждую вторую пару слотов.

  • Наконец, биты 1/3 алгоритма FEC приводят к тому, что кадр переносит только 10 замеров голоса, так что такой канал занимает все слоты разделяемой среды.

Приведенные расчеты показывают, что в пикосети могут одновременно существовать не более трех каналов SCO (возможно, соединяющих с разными подчиненными устройствами), причем только тогда, когда канал не использует алгоритм FEC для снижения доли битовых ошибок. Прямая коррекция ошибок уменьшает число каналов SCO до двух или даже одного.

Оставшаяся от каналов SCO пропускная способность используется для передачи асинхронных данных. Для этого в пикосети имеется канал ACL. Этот канал соединяет один источник (главное устройство) с несколькими приемниками (все подчиненные устройства пикосети). Его не нужно устанавливать, он существует всегда.

Потребности подчиненных устройств в передаче асинхронных данных главное устройство узнает путем их периодического опроса. Для этого оно использует служебный кадр с МАС-адресом устройства. Если у главного устройства есть данные для этого подчиненного устройства, то оно может совместить передачу данных с опросом в одном кадре.

На рис. 14.17 показано, что главное устройство использовало слоты 3 и 4 для обмена кадрами со вторым подчиненным устройством, слоты 9 и 10 — для обмена с первым подчиненным устройством и слоты 11 и 12 — для обмена с третьим подчиненным устройством. Метод опроса исключает коллизии при доступе к каналу ACL, но скорость доступа к этому каналу для каждого отдельного устройства не определена, она зависит от количества устройств, которые хотят передавать асинхронные данные.

Таким образом, в сети Bluetooth совмещаются техники коммутации каналов (для каналов SCO) и коммутации пакетов (для канала ACL).

В том случае, когда каналы SCO в сети не используются, вся пропускная способность среды отводится каналу ACL. При наличии кадров, состоящих из 5 слотов, максимальная скорость передачи данных составляет 432,6 Кбит/с в каждом направлении (без прямой коррекции ошибок). Возможно также несимметричное деление пропускной способности канала ACL, тогда максимальная скорость достигает 723,2 Кбит/с в одном направлении при скорости 57,6 Кбит/с в обратном. Не нужно забывать, что это — суммарные скорости передачи данных в канале ACL, а не скорости потоков данных отдельных устройств. Когда несколько устройств используют канал, скорость делится между всеми устройствами.

Оборудование для локальных сетей с разделяемой средой

Список ключевых слов: сетевой адаптер, или сетевая интерфейсная карта, двухпортовый повторитель, многопортовый повторитель, правило 4-х хабов, автосегментация, поддержка резервных связей, защита от несанкционированного доступа, конфигурационная коммутация.

Концентраторы вместе с сетевыми адаптерами, а также кабельной системой, представляют тот минимум оборудования, с помощью которого можно создать локальную сеть с разделяемой средой. Понятно, что такая сеть не может быть слишком большой, так как при большом количестве узлов общая среда передачи данных быстро становится узким местом, снижающим производительность сети. Поэтому концентраторы и сетевые адаптеры позволяют строить небольшие базовые фрагменты сетей, которые затем должны объединяться друг с другом с помощью коммутаторов, мостов и маршрутизаторов.

Основные функции сетевых адаптеров

Сетевой адаптер, или сетевая интерфейсная карта (Network Interface Card, NIC), вместе со своим драйвером реализует канальный уровень модели OSI в конечном узле сети — компьютере. Точнее, в сетевой операционной системе пара адаптер-драйвер выполняет только функции физического уровня и уровня MAC, в то время как уровень LLC обычно реализуется модулем операционной системы, единым для всех драйверов и сетевых адаптеров. Например, в ОС Windows XP уровень LLC реализуется в модуле NDIS, общем для всех драйверов сетевых адаптеров независимо от того, какую технологию поддерживает драйвер.

Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра.

Передача кадра из компьютера в кабель требует выполнения перечисленных ниже этапов.

  1. Прием кадра данных уровня LLC через межуровневый интерфейс вместе с адресной информацией уровня MAC. Обычно взаимодействие между протоколами внутри компьютера происходит через буферы, расположенные в оперативной памяти. Данные для передачи в сеть помещаются в эти буферы протоколами верхних уровней, которые извлекают их из дисковой памяти либо из файлового кэша с помощью подсистемы ввода-вывода операционной системы.

  2. Оформление кадра данных уровня MAC, в который инкапсулируется кадр уровня LLC. Заполнение адресов приемника и источника, вычисление контрольной суммы.

  3. Формирование символов кодов при использовании избыточных кодов типа 4В/5В. Скремблирование кодов для получения более равномерного спектра сигналов. Этот этап выполняется не во всех протоколах, например, технология Ethernet 10 Мбит/с обходится без него.

  4. Выдача сигналов в кабель в соответствии с принятым линейным кодом — манчестерским, NRZI, MLT-3 и т. п.

Прием кадра из кабеля в компьютер включает следующие действия.

  1. Прием из кабеля сигналов, кодирующих битовый поток.

  2. Выделение сигналов на фоне шума. Эту операцию могут выполнять различные специализированные микросхемы или процессоры DSP. В результате в приемнике адаптера образуется некоторая битовая последовательность, с большой степенью вероятности совпадающая с той, которая была послана передатчиком.

  3. Если данные перед отправкой в кабель подвергались скремблированию, то они пропускаются через дескремблер, после чего в адаптере восстанавливаются символы кода, посланные передатчиком.

  4. Проверка контрольной суммы кадра. Если контрольная сумма неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC, передается соответствующий код ошибки. Если контрольная сумма верна, то из МАС-кадра извлекается LLC-кадр и передается через межуровневый интерфейс наверх, протоколу LLC.

Распределение обязанностей между сетевым адаптером и его драйвером стандартами не определяется, поэтому каждый производитель решает этот вопрос самостоятельно. Обычно сетевые адаптеры делятся на адаптеры для клиентских компьютеров и адаптеры для серверов.

В адаптерах для клиентских компьютеров значительная часть работы перекладывается на драйвер, тем самым адаптер оказывается проще и дешевле. Однако при этом увеличивается степень загрузки центрального процессора компьютера рутинными работами по передаче кадров из оперативной памяти компьютера в сеть.

Адаптеры, предназначенные для серверов, обычно снабжаются собственными процессорами, которые самостоятельно выполняют большую часть работы по передаче кадров из оперативной памяти в сеть и обратно.

В зависимости от того, какой протокол реализует адаптер, они делятся на адаптеры Ethernet, Token Ring, FDDI и т. д. Так как протокол Fast Ethernet позволяет за счет процедуры автопереговоров автоматически выбрать скорость работы сетевого адаптера, то многие адаптеры Ethernet сегодня поддерживают две скорости работы и имеют в своем названии приставку 10/100.

В сетевых адаптерах реализована конвейерная схема обработки кадров, то есть процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байтов кадра начинается их передача. Это существенно (на 25-55 %) повышает производительность цепочки оперативная память — адаптер — физический канал — адаптер — оперативная память. Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байтов кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер осуществляет самонастройку этого параметра путем анализа рабочей среды и расчета, без участия администратора сети. Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.

Адаптеры базируются на специализированных интегральных схемах, что повышает производительность и надежность адаптера при одновременном снижении его стоимости.

Внимание. Повышение производительности канала «память-адаптер» очень важно для повышения производительности сети в целом, так как скорость продвижения кадра по любому маршруту обработки, включающему, к примеру, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие другие коммуникационные устройства не смогут повысить скорость работы сети.

Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению. В эти адаптеры обязательно входит интегральная схема ASIC (Application-Specific Integrated Circuit), выполняющая функции уровня MAC, а также большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор.

Основная функция концентраторов

Практически во всех современных технологиях локальных сетей определено устройство, которое имеет несколько равноправных названий — концентратор, хаб, повторитель. В зависимости от области применения этого устройства в значительной степени изменяется состав его функций и конструктивное исполнение. Неизменной остается только основная функция — повторение кадра либо на всех портах (как определено в стандарте Ethernet), либо только на некоторых портах, в соответствии с конкретным алгоритмом, определенным тем или иным стандартом.

Соседние файлы в папке olifer_v_g_olifer_n_a_kompyuternye_seti_principy_tehnologii