Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biologia.docx
Скачиваний:
60
Добавлен:
18.07.2016
Размер:
295.59 Кб
Скачать

Вопрос №1 Предмет, методы, задачи биологии. Биология — наука о жизни, ее формах и закономерностях развития. Предметом ее изучения является многообразие вымерших и ныне населяющих Землю живых существ, их строение , функции, происхождение, индивидуальное развитие, эволюция, распространение, взаимоотношения друг с другом и окружающей средой. Биология исследует общие и частные закономерности присущие жизни во всех ее проявлениях и свойствах: обмен веществ и энергии, размножение, наследственность и изменчивость, рост и развитие, раздражимость, дискретность, авторегуляция, движение и др. В зависимости от объектов изучения в биологии можно выделить ряд направлений: вирусологию, микробиологию, ботанику, зоологию, антропологию и др. Эти науки исследуют особенности происхождения, строения, развития, жизнедеятельности, свойства, разнообразие и распространение на земном шаре каждого отдельного вида вирусов, бактерий, животных, растений и человека. По структуре, свойствам и проявлениям индивидуальной жизни в биологии выделяют морфологию и анатомию , физиологию, генетику , эволюционное учение, экологию.

Жизненные явления на молекулярном уровне изучает молекулярная биология; структуру и функции клеток, тканей и органов —цитология, гистология и анатомия; популяции и биологические особенности всех организмов, входящих в её состав, — популяционная генетика и экология; закономерности формирования, функционирования, взаимосвязи и развития высших структурных уровней организации жизни на Земле до биосферы в целом — биогеоценология. Закономерности строения и функционирования, единые для всех организмов независимо от их систематического положения, разрабатывает общая биология. В настоящее время различают несколько структурно- функциональных уровней организации и изучения жизненных явлений: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и биосферно-биогеоценотический. На молекулярном уровне исследуется роль биологически важных молекул в росте и развитии организмов, хранении и передаче наследственной информации, в обмене веществ и превращении энергии в живых клетках и других явлениях. Клеточный уровень предусматривает изучение структурной организации клетки. Учение о клетке, или цитология.

На организменном уровне изучаются процессы и явления происходящие в особи , и механизмы согласованного функционирования ее органов и систем, а также и взаимоотношения различных органов в жизнедеятельности организма, приспособительные изменения и поведение организмов в различных экологических условиях. Значение биологии как науки исключительно велико, так как познание исторического развития органического мира, начиная от молекулярного уровня до биогеоценотического, играет определяющую роль в формировании материалистического мировоззрения и понимании коренных философско-методологических проблем . Кроме того, биология способствует решению жизненно важных практических задач. Так, в частности, быстрые темпы роста населения планеты, постоянное уменьшение территорий, занятых сельскохозяйственным производством, привели к глобальной проблеме современности - производству пищи. Чтобы обеспечить потребности человека в пище, необходимо резко увеличить производство сельскохозяйственной продукции. Эту задачу способны решить такие науки, как растениеводство и животноводство, базирующиеся на достижениях генетики и селекции. Благодаря знанию законов наследственности и изменчивости можно создавать высокопродуктивные сорта культурных растений и пород домашних животных, что позволит интенсивно вести сельскохозяйственное производство и удовлетворять потребности населения планеты в пищевых ресурсах. Биологические знания помогают в борьбе с вредителями и болезнями культурных растений, паразитами животных. Они играют важную роль в совершенствовании лесного и промыслового хозяйства, звероводства. Достижения современной биологии нашли практическое применение в промышленном биологическом синтезе аминокислот, кормовых белков, ферментов, витаминов, стимуляторов роста и средств защиты растений, органических кислот и др. С помощью методов генной инженерии биологами созданы организмы с новыми комбинациями наследственных признаков и свойств, например растения с повышенной устойчивостью к заболеваниям, засолению почв, способностью к фиксации атмосферного азота и др. Кроме того, генная инженерия положена в основу разработки принципов биотехнологии, связанной с производством биологически активных веществ (инсулин, антибиотики, интерферон, новые вакцины для профилактики инфекционных заболеваний человека и животных). Теоретические достижения биологии широко применяются в медицине. Именно успехи и открытия биологии определили современный уровень медицинской науки. В частности, генетические исследования позволяют разрабатывать методы ранней диагностики, лечения и профилактики многих наследственных болезней человека (альбинизм, гемофилия, бесплодие, слабоумие и др.). С ними во многом связан и дальнейший прогресс медицины. Решение таких важных проблем современности, как охрана окружающей среды, рациональное использование природных ресурсов и повышение продуктивности растительного мира, возможны только на основе биологических исследований. Они предусматривают выявление и устранение отрицательных эффектов воздействия человека на природу (загрязнение среды вредными веществами), определение режимов рационального использования резервов биосферы, вскрытие негативных последствий хозяйственной деятельности. Кроме того, задачей биологии является обеспечение сохранности биосферы и способности природы к самовоспроизведению.

Вопрос №2 Уровни организации жизни.

1. Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества; нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды.

2. Клеточный уровень. На клеточном уровне организации структурными элементами выступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.

3. Тканевый уровень. Ткань совокупность клеточных элементов различных клеточных типов и межклеточного вещества, специализированная на выполнении специфических функций.

4. Органный уровень. Орган - совокупность тканей, которые связаны выполнением общих функций и занимают определенное место в многоклеточном организме.

5. Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам. У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему. Основная стратегия жизни на этом уровне - ориентация организма на выживание в постоянно меняющихся условиях среды.

6. Популяционно-видовой уровень организации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура , плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

7. Биогеоценотический (экосистемный) уровень организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети", трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня - активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии.

8. Биосферный уровень. Самый высокий уровень организации жизни. Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т. е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека.

 Основная стратегия, жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты. 3 systema - составленное из частей; соединение. 4 Аддитивные - сумма свойств частей системы 5 Эммергентные - качественно новые свойства системы. 6 Иерархичность – соподчиненность. Все уровни организации живого тесно объединены между собой, что свидетельствует о целостности живой природы. Без биологических процессов, осуществляемых на этих уровнях, невозможны эволюция и существование жизни на Земле.

Вопрос №3 Основные положения клеточной теории. Цитология как наука.

Цитология - наука о клетке. Наука о клетке называется цитологией (греч. "цитос"-клетка, "логос"-наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология - одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина "клетка" насчитывает свыше 300 лет. Впервые название "клетка" в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.

Основные положения клеточной теории сформулированы ботаником Матиасом Шлейдом (1838г) и зоологом-физиологом Шванном (1839г):

- все организмы состоят из одинаковых структурных единиц- клеток;

-клетки растений и животных сходны по строению, образуются и растут по одним и тем же законам.

В 1858 году немецкий учёный Рудольф Вирхов обосновал принцип преемственности клеток путём деления. Он писал, что всякая клетка происходит из другой клетки…, т.е дал понять откуда появляется клетка. Это утверждение стало третьим положением клеточной теории.

Изучение клетки с помощью новейших физических и химических методов исследования позволили сформулировать основные положения современной клеточной теории:

- все живые организмы состоят из клеток. Клетка- единица строения живых организмов. Вне клетки нет жизни.

- клетки всех организмов сходны между собой по строению и химическому составу;

-на современном этапе развития живого клетки не могут образовываться из неклеточного вещества. Они появляются только из ранее существовавших клеток путём деления;

- клеточное строение всех ныне живущих организмов- свидетельство единства происхождения Вопрос №4 Принципы существования живой системы. Свойства живой материи.

Свойства живых структур: 1) самообновление. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад); 2) самовоспроизведение. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями. Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК; 3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм; 4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования; 5) поддержание гомеостаза — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы; 6) структурная организация — упорядоченность, живой системы, обнаруживается при исследовании — биогеоценозов; 7) адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде; 8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных живых системы, а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем; 9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания; 10) изменчивость — за счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации; 11) индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК, в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров; 12) филогенетическое развитие. Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов; 13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток.

Вопрос №5 Химический состав клетки. Вода и минеральные соли.

В клетке обнаружены многие элементы периодической системы Менделеева. Функции 27 из них определены. Наиболее распространены углевод, азот, кислород, фосфор и сера. Они составляют 99% общей массы клетки.

Химические элементы, входящие в состав клеток, делят на 3 группы: макроэлементы, микроэлементы, ультрамикроэлементы.

  1. Макроэлементы: O,C, H, N, Ca, K, Mg, Na, Fe, S, P, CL. На долю этих элементов приходится более 99% всей массы клетки.

  2. Микроэлементы: Cu, B, Co, Mo, Mn, Ni, Br, Zn, I и другие. На их долю в клетке суммарно приходится более 0,1% концентрация каждого не превышает 0,001%. Это ионы металлов, входящие в состав биологически активных веществ (гормонов, ферментов и т.д)

  3. Ультрамикроэлементы: уран, золото, бериллий, ртуть, цезий, селен и другие.

В клетках некоторых организмов обнаружено повышенное содержание отдельных химических элементов. Например, бактерии способны накапливать марганец, морские водоросли- йод, ряска- радий, моллюски и ракообразные- медь, позвоночные- железо.

Химические элементы входят в состав органических соединений. Углевод, кислород и водород участвуют в построении молекул углеродов и жиров. В молекулы белков помимо этих элементов входят азот и сера, а в молекулы нуклеиновых кислот фосфор и азот. Ионы железа и меди включены в молекулы окислительных ферментов, магний- в молекулу хлорофилла, железо входит в состав гемоглобина, йод- в состав гормона щитовидной железы- тироксина , цинк- в состав витамина B12.

Химические элементы, принимающие участие в процессах обмена веществ и обладающие выраженной биологической активностью, называют биогенными.

Все химические соединения в клетке можно разделить на органические(вода и минеральные соли) и неорганические(белки, жиры, углеводы, нуклеиновые кислоты).

ВОДА.

1) Вода - важнейший компонент клетки. Ей принадлежит существенная и

многообразная роль в жизни клетки.

-универсальный растворитель;

-среда, в которой протекают биохимические реакции;

-определяет физиологические свойства клетки(её упругость, объём);

-участвует в химических реакциях;

-поддерживает тепловое равновесие клетки и организма в целом благодаря высокой теплоёмкости и теплопроводности;

-основное средство для транспорта вещесвт.

2) Вещества растворимые в воде гидрофильные.

- спирты, амины, углеводы, белки, соли, низкокалорийные органические вещества и др.

Нерастворимые в воде гидрофобные.

-жиры, клетчатка.

СОЛИ.

1) Для процессов жизнедеятельности из входящих в состав солей катионов

наиболее важны: К+, Na+, Ca2+, Mg2+ из анионов: HPO4І, H2PO4, Cl, HCO3.

2) Концентрация катионов и анионов в клетке и в среде её обитания, как

правило различна. Так, внутри клетки всегда довольно высокая

концентрация ионов калия и очень маленькая концентрация ионов натрия. Напротив, в окружающей среде – в плазме крови, в морской воде – мало ионов калия и много ионов натрия. Пока клетка жива, это соотношение ионов внутри и вне клетки стойко поддерживается.

3) Неорганические вещества содержаться в клетке не только в растворённом, но и в твёрдом состоянии. В частности, прочность и твёрдость костной ткани обеспечивается фосфатом кальция, а раковин моллюсков – карбонатом кальция.

Вопрос №6 Белки, строение и функции. Ферменты и их свойства.

Из органических веществ клетки на первом месте по количеству и значению стоят белки. В состав входят атомы углерода, водорода, кислорода, азота, а также Me-Fe, Zn, Cu. Белкам присуща огромная мон. масса. Строение белков Среди органических соединений белки самые сложные. Они относятся к соединениям называемым полимерами. Её мономером являются нуклеотиды, состоящие нуклеиновые кислоты, т.е. первичная структура белка – это последовательное соединение аминокислот, остающееся за счёт образования

пептидной связи. Вторичное строение белка- это закрученная в спираль полипептидная цепочка. Третичная структура белка- пространственное расположение закрученной в спираль полипептидной цепочки.

Четвертичная структура белка- существует в белках, в состав молекул которых входит более одной полипептидной цепочки.

Свойства и функции белков. Свойства: 1)существуют белки совершенно не растворимые в воде

2)малоактивные и химически устойчивы к воздействию агентов

3) Есть белки, имеющие вид нитей или молекулы в виде жирков диаметром 5-7мм. Под влиянием различных физических и химических факторов (высокой t°, ряда химических веществ, облучения, механического воздействия) слабые связи, поддерживающие вторичное и третичное строение белка – рвутся и молекула развёртывается. Нарушение природного строения белка называется денатурацией. Функции:

1. Строительная. Из белков состоят мембраны клеток и клеточных органоидов.

2. Каталитическая. Они ускоряют реакции в десятки, сотни, млн. раз

3. Сигнальная. В поверхностную мембрану клетки встроены молекулы белков, способных изменять своё третичное строение в ответ на действие факторов внешней среды.

4. Двигательная. Все виды движения, к которым способны клетки, выполняют особые сократительные белки.

5. Транспортная. Способны присоединять различные вещества и переносить их из одного места в другое. 6. Защитная

7. Энергетическая. При расщеплении 1г. белка освобождается 17,6 кДЖ

ФЕРМЕНТЫ- это специфические белки, выполняющие роль катализаторов в живых организмах. Основные функции ферментов - ускорять превращение веществ, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохимические процессы (напр., реализацию генетической информации), в том числе в ответ на изменяющиеся условия.

Ферменты характеризуются следующими основными свойствами.  1. Все ферменты представляют собой глобулярные белки.  2. Информация о ферментах, как и о других белках, закодирована в ДНК.  3. Ферменты действуют как катализаторы.  4. Присутствие ферментов не влияет ни на природу, ни на свойства конечного продукта (или продуктов) реакции.  5. Ферменты действуют чрезвычайно эффективно, т. е. очень малое количество фермента вызывает превращение больших количеств субстрата. Одна молекула каталазы способна, например, при температуре тела разложить за одну секунду на воду и кислород около 600 тысяч молекул пероксида водорода. Можно сравнить эффективность каталазы и такого, например, неорганического катализатора, как диоксид марганца, добавив их по отдельности к пероксиду водорода и измерив скорость выделения кислорода. (Хорошим источником каталазы служит печень). В среднем ферменты способны катализировать около 1000 реакций в секунду. Без катализаторов реакции протекали бы в миллионы раз медленнее.  6. Ферменты высокоспецифичны, т. е. один фермент катализирует обычно только одну реакцию. Каталаза, например, катализирует только расщепление пероксида водорода.  7. Катализируемая ферментом реакция обратима.  8. Активность ферментов меняется в зависимости от рН и температуры, а также от концентрации как субстрата, так и самого фермента 9. Ферменты снижают энергию активации катализируемой реакции.  10. В молекуле фермента есть активный центр, который вступает в контакт с субстратом. Этот активный центр имеет особую форму

Вопрос №7 Нуклеиновые кислоты. ДНК, строение, свойства и функции. Самоудвоение ДНК.

Подобно белкам, нуклеиновые кислоты — биополимеры, а их функция заключается в хранении, реализации и передаче генетической информации в живых организмах.

Существует два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза — в ДНК, рибоза — в РНК) и остаток фосфорной кислоты.

Компоненты нуклеотидов ДНК

  1. Пятиуглеродный сахар- Дезоксирибоза

  2. Азотистые основания- Аденин, гуанин, цитозин, тимин

  3. Остаток фосфорной кислоты- Остаток фосфорной кислоты

Молекула ДНК может включать огромное количество нуклеотидов — от нескольких тысяч до сотен миллионов. В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей , соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин — только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК — способность к самовоспроизведению или удвоению . При этом сначала комплементарные цепи молекул ДНК расходятся. Затем на каждой цепи начинается синтез новой комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной молекулы ДНК образуются две новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, идущий во время синтетической (S) фазы жизненного цикла клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и в процессе последующего деления делится между дочерними клетками. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков.

Ферменты и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя . Ранее существовали и две другие модели: «консервативная» — в результате репликации одна молекула ДНК состоит только из родительских цепей, а другая — только из дочерних цепей; «дисперсионная» — все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК).

Процесс редупликации: раскручивание спирали молекулы — отделение одной цепи от другой на части молекулы ДНК — воздействие фермента ДНК-полимеразы на молекулу — присоединение к каждой цепи ДНК комплементарных нуклеотидов — образование двух молекул ДНК из одной.

Вопрос №8 РНК, строение и функции АТФ.

Подобно белкам, нуклеиновые кислоты — биополимеры, а их функция заключается в хранении, реализации и передаче генетической информации в живых организмах.

Существует два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза — в ДНК, рибоза — в РНК) и остаток фосфорной кислоты.

Компоненты нуклеотидов РНК:

  1. Пятиуглеродный сахар- Рибоза

  2. Азотистые основания- Аденин, гуанин, цитозин, урацил

  3. Остаток фосфорной кислоты- Остаток фосфорной кислоты

Молекулы РНК, как правило, одноцепочечные и содержат значительно меньшее число нуклеотидов. Выделяют три вида РНК , различающиеся по величине молекул и выполняемым функциям, — информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).

Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.  1) Информационная РНК (и-РНК).        Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.  2) Рибосомная РНК (р-РНК).        Самый распространенный вид РНК. Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более. 3) Транспортная РНК .        Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта аминокислот к месту синтеза белка. Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры.  4) Минорные РНК.        Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки. Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д. 5) Рибозимы.        Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора). 6) Вирусные РНК.        Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции, и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК. 

АТФ

Аденозинмонофосфорная кислота (АМФ) входит в состав всех РНК. При присоединении ещё молекул фосфорной кислоты АМФ превращается в аденозинтрифосфорную кислоту (АТФ) и становится источником энергии, необходимой для биологических процессов, идущих в клетке.

Аденозинтрифосфорная кислота (АТФ) состоит из азотистого основания- аденина, сахара- рибозы и 3 остатков фосфорной кислоты. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии, расходуемой на обеспечение всех жизненных функций клетки . Связи в молекуле АТФ называют макроэргическими.

Отщепление концевого фосфора от молекулы АТФ сопровождается выделением 40 кДж энергии. Синтез АТФ происходит в митохондриях.

Вопрос №9 Углеводы и жиры. Строение и функции.

Углеводы- большая группа органических соединений, входящих в состав живых клеток. Термин «углеводы» введён впервые отечественным учёным Шмидтом в середине прошлого столетия 1844 года. В нём отражены представления о группе веществ, молекула которых отвечает общей формуле: Сn(H2O)n – углевод и вода.

Углеводы принято делить на 3 группы:

-моносахариды (глюкоза, фруктоза, манноза)

- олигосахариды (сахароза, лактоза)

-полисахариды (гликоген,крахмал)

Функции углеводов:

  1. Моносахариды, первичные продукты фотосинтеза, служат исходными для построения разнообразных органических веществ;

  2. Углеводы- основной источник энергии для организма, так как при их разложении с использованием кислорода выделяется больше энергии, чем при окислении жира в том же объёме кислорода;

  3. Защитная функция. Слизь, выделяемая различными железами, содержит много углеводов и их производных. Она предохраняет стенки полых органов (бронхи, желудок, кишечник) от механических повреждений. Обладая антисептическими свойствами, слизь защищает организм от проникновения болезнетворных бактерий;

  4. Структурная и опорная функция. Сложные полисахариды и их производные входят в состав плазматической мембраны, оболочки растительных и бактериальных клеток, наружного скелета членистоногих.

Жиры- органические соединения, которые наряду с белками и углеводами, обязательно присутствуют в клетках. Их относят к большой группе органических жироподобных соединений, классу липидов.

Жиры представляют собой соединения глицерина (трехатомный спирт) и высокомолекулярных жирных кислот (насыщенных, например: стеариновой, пальмитиновой, и ненасыщенных, таких как олеиновая, линолевая и другие). Соотношением насыщенных и ненасыщенных жирных кислот определяются физические и химические свойства жиров.

Жиры нерастворимы в воде, но хорошо растворяются в органических растворителях, например в эфире.

Функции липидов в клетке разнообразны:

1)структурная (принимают участие в построении мембраны);

2)энергетическая (при распаде в организме 1 г жира выделяется 9,2 ккал энергии- в 2,5 раза больше, чем при распаде того же количества углеводов);

3)защитная (от потери тепла, механических повреждений);

4)жир- источник эндогенной воды (при окислении 10 г жира выделяется 11 г воды);

5)регуляция обмена веществ (например: стероидные гормоны – кортикостерон и др.)

Вопрос №10 Клетка как живая система.

Клетка — элементарная живая система, основа строения и жизнедеятельности всех живых организмов. Известно, что они бывают одноклеточными или многоклеточными.

Клетка — это система, состоящая из биополимеров , а также содержащая и малые органические и неорганические молекулы. Главными свойствами этой системы являются: самовоспроизведение, постоянный обмен веществами и энергией с внешней средой, структурное обособление ее от внешней среды. Всякие клетки отделены как от окружающей их среды, так и друг от друга с помощью тонкой поверхностной пленки — мембраны . Эта мембрана построена из липопротеидов и окружает содержимое клетки, цитоплазму и ядро, со всех сторон. Плазматическая мембрана имеет очень важные свойства: она ограничивает свободное перемещение веществ из клетки наружу и наоборот, избирательно пропускает вещества и молекулы, поддерживая таким образом постоянство состава и свойств цитоплазмы. Кроме того, на плазматической мембране располагаются специальные белковые комплексы , которые «узнают» вещества, отбирают их и с помощью других белков активно транспортируют внутрь или наружу из клетки. В цитоплазме клеток есть специальные работающие сложно организованные системы, выполняющие различные нагрузки. Это органоиды. К органоидам прокариотических клеток относятся рибосомы, нуклеоид — компонент, содержащий ДНК, небольшое число мембранных пузырьков и специальные органоиды Эукариотические клетки устроены намного сложнее. Их молекулы ДНК образуют комплексы со специальными белками, формируя хромосомы. Хромосомы находятся в ядре. Ядро представляет собой клеточный органоид, обеспечивающий работу системы белкового синтеза и контроль за этой работой.

К немембранным органеллам клетки относятся: центриоли, микротрубочки, филаменты, рибосомы и полисомы.

Центриоли , обычно их две, представ­ляют собой мелкие тельца, окруженные плотным участком ци­топлазмы. От каждой центриоли лучеобразно отходят микротру­бочки, получившие название центросферы. Центриоли являются полуавтономными самообновляющи­мися структурами, которые удваиваются при делении клетки. Вначале центриоли расходятся в стороны, и возле каждой из них образуется дочерняя центриоль. Таким образом, перед деле­нием в клетке имеются две попарно соединенные центриоли ­две диплосомы.

Микротрубочки  представляют собой различной длины полые цилиндры. Многие микро­трубочки входят в состав центросферы. Другие микротрубочки расположены под ци­толеммой, в апикальной части клетки. Здесь они вместе с пуч­ками микрофиламентов образуют внутриклеточную трехмерную сеть. Микро­трубочки образуют цитоскелет клетки и участвуют в транспорте веществ внутри нее.

Цитоскелет клетки представляет собой трехмерную сеть, в которой различные белковые нити связаны между собой по­перечными мостиками. В образовании цитоскелета, помимо микротрубочек, участвуют также актиновые, миозиновые и про­межуточные филаменты, которые выполняют не только опор­ную, но и двигательную функцию клетки.

Рибосомы  имеются во всех клетках, они участву­ют в образовании белковых молекул - в синтезе белка. Это сложные рибонуклеопротеиды, состоя­щие из белков и молекул РНК в соотношении 1: 1. Различают рибосомы одиночные - монорибосомы и собранные в группы - полирибосомы, или полисомы. Рибосо­мы располагаются свободно на поверхности мембран, в резуль­тате чего образуется зернистая эндоплазматичес­кая сеть.

Включения - образуются в результате жиз­недеятельности клеток. Различают трофические включения: жировые, белковые, которые могут накапливаться в гиалоплазме в качестве резервных материалов, необходимых для жизнедея­тельности клетки. К этим же включениям относятся полисахари­ды, находящиеся в клетках в виде гликогена. Секреторные включе­ния, содержащие биологически активные вещества, накапливают­ся в железистых клетках

К мембранным органеллам клетки относятся: эндоплазматическая сеть, аппарат гольджи, лизосомы, вакуоли, пероксисомы, митохондрии (двумембранные), пластиды (двумембранные).

Эндоплазматическая сеть пред­ставляет собой единую непрерывную структуру, образованную системой цистерн, трубочек и уплощенных мешочков. На элек­тронных микрофотографиях различают зернистую и незернистую эндо­плазматическую сеть. Внешняя сторона зернистой сети покрыта рибосомами, незернистая лишена рибосом. Зернистая эндо­плазматическая сеть синтезирует и транспорти­рует белки. Незернистая сеть синтезирует липиды и углеводы и участвует в их обмене. Одной из важнейших функций эндоплазматической сети является синтез мембран­ных белков и липидов для всех клеточных органелл.

АППАРАТ ГОЛЬДЖИ , органоид эукариотических клеток. Представляет собой образованную мембраной систему плоских цистерн, вакуолей и мелких пузырьков. В аппарат Гольджи поступают синтезированные на мембранах эндоплазматической сети белки и липиды. Аппарат Гольджи образует лизосомы, сократительные вакуоли простейших, а также компоненты клеточной стенки у растений.

Лизосомы  представляют собой пузырьки. Лизосомальные ферменты синтезируются на рибосомах зернистой эндоплазматической сети, откуда переносятся транспортными пузырьками в ком­плекс Гольджи. От пузырьков комплекса Гольджи отпочковыва­ются первичные лизосомы. В лизосомах поддерживается кислая среда. Мембраны лизосом устой­чивы к заключенным в них ферментам и предохраняют цито­плазму от их действия. Нарушение проницаемости лизосомаль­ной мембраны приводит к активации ферментов и тяжелым по­вреждениям клетки вплоть до ее гибели.

Вакуоли - небольшие, полости в животных и растительных клетках или одноклеточных организмах. В клетках ряда многоклеточных беспозвоночных, способных к внутриклеточному пищеварению, и в теле некоторых одноклеточных организмов образуются пищеварительные Вакуоли., содержащие пищеварительные ферменты. У высших животных пищеварительные Вакуоли, образуются в особых клетках — фагоцитах. У многих одноклеточных организмов имеются также сократительные, или пульсирующие Вакуоли, периодически выбрасывающие своё содержимое во внешнюю среду . У простейших сократительные Вакуоли— главным образом аппарат, регулирующий осмотическое давление, а также служащий для выведения из организма продуктов распада.

Вакуоли растений наполнены бесцветным или окрашенным клеточным соком. Вещества, растворённые в клеточном соке Вакуоли растений (сахара, полисахариды, алкалоиды) вызывают в силу осмоса поступление в клетки питательных веществ и воды и создают механическое напряжение клеток и тканей — тургор.

Пероксисомы – мельчайшие пузырьки, содержащие набор ферментов. Своё название органеллы получили от перекиси водорода, промежуточного продукта в цепи биохимических реакций, идущих в клетке. Ферменты пероксисомы, и прежде всего каталаза, нейтрализуют токсичную перекись водорода, вызывая её распад с выделением воды и кислорода.

Пероксисомы участвуют в обменных реакциях: в метаболизме липидов, холестирина и других.

Митохондрии - это органеллы размером с бактерию .Они найдены в большом количестве почти во всех эукариотических клетках. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называютмежмембранным пространством.

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов. Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.  У высших растений найден целый набор различных пластид , представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.

Вопрос №11 Способы размножения организмов.

Способы размножения организмов

Все известные способы размножения организмов в природе сводятся к двум основным формам: бесполой и половой.

Бесполое размножение. В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией. Различают несколько типов бесполого размножения.

Простое деление. Особенно распространено бесполое размножение у бактерий и синезеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом.

Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.

Почкование. Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы.

Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.

Фрагментация. Ряд плоских и кольчатых червей, иглокожие могут размножаться посредством расчленения тела на несколько фрагментов, которые затем достраиваются до целостного организма. В основе фрагментации лежит способность многих простых существ к регенерации утраченных органов. Так, если от морской звезды отделить луч, то из него вновь разовьется морская звезда. Гидра способна восстановиться из 1/200 части своего организма. Обычно размножение фрагментацией происходит при повреждениях. Самопроизвольную фрагментацию осуществляют только плесневые грибы и некоторые морские кольчатые черви.

Спорообразование. Родоначальницей нового организма может стать специализированная клетка родительского существа — спора. Такой способ размножения характерен для растений и грибов. Размножаются спорами многоклеточные водоросли, мхи, папоротники, хвощи и плауны.

Споры представляют собой клетки, покрытые прочной оболочкой, защищающей их от чрезмерной потери влаги и устойчивой к температурным и химическим воздействиям. Споры наземных растений пассивно переносятся ветром, водой, живыми существами. Попадая в благоприятные условия, спора раскрывает оболочку и приступает к митозу, образуя новый организм. Водоросли и некоторые грибы, обитающие в воде, размножаются зооспорами, снабженными жгутиками для активного передвижения.

Одноклеточное животное малярийный плазмодий размножается посредством шизогонии — множественного деления. Сначала в его клетке путем делений формируется большое количество ядер, затем клетка распадается на множество дочерних.

Вегетативное размножение. Этот вид бесполого размножения широко распространен у растений. В отличие от спорообразования, вегетативное размножение осуществляется не особыми специализированными клетками, а практически любыми частями вегетативных органов.

Многолетние дикорастущие травы размножаются корневищами, земляника — усами, а виноград, смородина и слива — отводками. Картофель и георгины используют для размножения клубни — видоизмененные подземные участки корня. Тюльпаны и лук размножаются луковицами. У деревьев и кустарников укореняются с образованием нового растения побеги — черенки, а у бегонии роль черенков способны выполнять листья. Черенками размножают малину, сливу, вишню и розы. На корнях и пнях деревьев образуется поросль, которая затем превращается в самостоятельные растения.

Половое размножение. В половом размножении, в отличие от бесполого, участвует пара особей. Их половые клетки несут гаплоидные наборы хромосом. В процессе оплодотворения гаметы сливаются и образуют диплоидную оплодотворенную яйцеклетку , которая дает начало новому организму.

Одна из гомологичных хромосом соматической клетки достается от "мамы", а другая — от "папы". В результате части генетического материала родительских особей объединяются, и в потомстве появляются новые комбинации генов. Разнообразие генетического материала позволяет потомству успешнее приспосабливаться к изменяющимся внешним условиям. В обогащении наследственной информации состоит главное преимущество полового размножения, его основное биологическое значение.

У обоеполых растений имеется ряд особенностей, исключающих самооплодотворение. Тычинки и пестики обоеполых цветков созревают не одновременно, поэтому происходит именно перекрестное опыление разных особей. Конопля имеет раздельно мужские пестичные и женские тычиночные цветки на разных особях.

Вопрос №12 Жизненный цикл клетки.

Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление, называется жизненным циклом клетки. Это время жизни клетки от одного деления до другого. Клеточный цикл состоит из интерфазы и деления.

Интерфаза- период жизненного цикла клетки между двумя митотическими делениями, в течение которого синтезируются вещества, необходимые для существования и последующего деления клетки, а также возникают специальные структуры в зависимости от ее функциональных особенностей.

Интерфазу под­разделяют на три периода:

1) g1 — пресинтетический, когда про­исходит синтез РНК, белка и рост клетки;

2) S — синтетичес­кий,  когда удваивается молекула ДНК путем репликации и достраивается вторая хроматида у хромосом;

3) g2 — постсинте­тический, когда синтезируется белок и клетка подготавливает­ся к делению. При этом появляются специальные белки, из ко­торых   будут  строиться   нити  веретена  деления.   Этот  период называется еще премитотическим, так как   деление может на­чаться лишь в том случае, если цитоплазма и ядро достигли зна­чительных размеров и приобрели достаточную массу. В цито­плазме накапливается достаточно органелл, которые делятся, и достаточное  количество энергии  в  виде АТФ,  поскольку для всех движений и перемещений хромосом в клетке, построения веретена деления, образования межклеточных перегородок тре­буются большие затраты энергии. Клетки перед началом деления имеют диплоидный набор двухроматидных хромосом (2n4с).

Ядро- имеется во всех клетках человека, кроме эритроцитов и тромбоцитов. Функции ядра - хранение и передача новым клеткам наследственной информа­ции. Эти функции связаны с наличием в ядре ДНК. В ядре про­исходит также синтез белков - рибонуклеиновой кислоты РНК и рибосомных материалов.  У большинства клеток ядро шаровидное или овоидное, од­нако встречаются и другие формы ядра. Наиболее крупное ядро имеет яйцеклетка. Большинство клеток человека одно­ядерные, однако имеются двухъядерные. Некоторые структуры являются многоядерными . У ядра различают ядер­ную оболочку, хроматин, ядрышко и нуклеоплазму.

Ядерная оболочка состоит из 2 мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из неё. Поры не являются постоянными образованиями. Число пор увеличивается в период наибольшей ядерной активности. Ядерная оболочка связана непосредственно с эндоплазмотической сетью. На наружной стороне находится рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки.

Ядерный сок - внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нём присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического матириала.

Ядрышко –обязательный компонент ядра, выявляется во всех неделящихся клетках. Оно имеет вид интенсивно окраши­вающегося округлого тельца, величина которого пропорцио­нальна интенсивности белкового синтеза. Ядрышко состоит из электронно-плотной нуклеолонемы , в ко­торой различают нитчатую часть, состоящую из множества переплетающихся нитей РНК, и гранулярную часть. Гранулярная часть обра­зована зернами, представляющими собой частицы РНП - предшественников рибосомных субъеди­ниц. Околоядрышковый хроматин внедряется в углубления нук­леолонемы. В ядрышке образуются рибосомы.

Хромосомы ядерных организмов Строение хромосомы эукариотической клетки, имеющей ядро, считается одним из самых сложных. В ее основе лежит линейная молекула ДНК значительной длины, которая может достигать 5 см! Такие экземпляры можно встретить, изучая строение хромосом человека. Кроме молекулы ДНК, хромосому составляют также специализированные белки - гистоны. Их насчитывают пять: Н1, Н2А, Н3, Н4 - это основные белки. Кроме них молекула содержит белки негистонные. Строение хромосом эукариотов очень сложно и имеет вид бус. Существуют еще несколько типов хромосом, которые встречаются реже. К ним относятся гигантские хромосомы, политенные хромосомы и хромосомы типа ламповых щеток. 1)Гигантские хромосомы отличаются огромными размерами. Их можно обнаружить на определенных этапах развития клеточного цикла – периода жизни клетки между делениями. Они встречаются в клетках некоторых личинок насекомых, а также позвоночных и беспозвоночных. 2)Политенные хромосомы представляют собой множественные дочерние нити, которые отходят от материнской в большом количестве, но при этом не располагаясь в хаотичном порядке, а объединяясь в единую спираль. Они содержатся в клетках внутренних органов живых организмов, например, в клетках кишечника, жирового тела, слюнных желез, трахеи. Также политенные хромосомы можно встретить в сосудах личинок двукрылых насекомых. 3)Хромосомы типа ламповых щеток – это гигантские хромосомы, более длинные, чем политенные, которые обнаруживаются в ооцитах позвоночных. Строение хромосом типа ламповых щеток отличается большим количеством разнообразных по размеру и длине боковых петелек, на которых происходит синтез РНК.

Вопрос №13 Способы деления клетки.

Способы деления эукариотических клеток: митоз, мейоз, амитоз.

Амитоз — прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Веретено деления не образуется. Амитоз приводит к появлению двух клеток, но очень часто в результате амитоза возникают двуядерные и многоядерные клетки.Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делится перетяжкой, образуя два или имеет место множественное резделение ядра, его фрагментация. Ядра могут быть неравной величины. Амитоз встречается в отживающих, дегенерирующих клетках, неспособных дать новые жизнеспособные клетки.В норме амиотическое деление ядер встречается в зародышевых оболочках животных, в формулярных клетках яичника.

Амитотически делящиеся клетки встречаются при различных патологических процессах .

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных

двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Вопрос №14 Мейоз как способ деления клетки.

Мейоз это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Вопрос №15 Понятие об онтогенезе.

Онтогенез- индивидуальное развитие особи- начинается с момента слияния сперматозоида с яйцеклеткой и образования зиготы, заканчивается смертью. Термин онтогенез был введен в биологию известным немецким естествоиспытателем XIX в. Э. Геккелем.

В онтогенезе выделяют два относительно самостоятельных этапа развития: пренатальный и постнатальный. Первый начинается с момента зачатия и продолжается до рождения ребенка, второй — от момента рождения до смерти человека. Следовательно, смерть является лишь одним из моментов жизни и представляет собой длительный процесс её отрицания. Ф. Энгельс писал: «Уже и теперь не считают научной ту физиологию, которая не рассматривает смерть как существенный, момент жизни... которая не понимает, что отрицание жизни по существу со-держится в самой жизни, так что жизнь всегда мыслится в соотношении со своим необходимым результатом, заключающимся в ней постоянно в зародыше,— смертью. Диалектическое понимание жизни именно к этому и сводится» '. Таким образом, истинное рождение человека происходит в момент зачатия, появление же новорожденного знаменует лишь окончание первого этапа развития — пренатального, длящегося в среднем 280 дней. С появлением ребенка на свет развитие продолжается в течение всего постнатального этапа, в котором, в свою очередь, можно выделить ранний, зрелый и заключительный (период старения) этапы развития. Только что родившийся человек отличается от взрослого рядом качественных особенностей и не представляет собой его простую уменьшенную копию. И хотя новорожденный обладает всем необходимым набором морфологических и функциональных свойств, обеспечивающих ему выживание в определенных, наследственно запрограммированных условиях окружающей среды, его физиологические возможности далеко не соответствуют функциональной активности взрослого организма. Время, в течение которого развивающийся ребенок достигает функционального уровня взрослого, если учитывать основные физиологические показатели организма человека (функционирование систем крови, кровообращения, пищеварения, нервной и т. д.) .составляет 16— 20 лет. Так, например, только к 20-ти годам у человека заканчивается формирование эндокринной и нервной систем. Для педагогов особо интересным является именно этот этап онтогенеза человека (от рождения до 18—20 лет), так как функциональные особенности детского организма делают его наиболее чувствительным к педагогическим воздействиям и именно в этот период происходит наиболее интенсивное физическое развитие и формирование психики человека.

Вопрос№16. Ранние этапы онтогенеза.

Онтогенез (от греч. ón, род. падеж óntos — сущее и...генез), индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост, т. е. увеличение массы тела, его размеров, дифференцировку. Термин "О." введён Э. Геккелем (1866) при формулировании им биогенетического закона. У животных и растений, размножающихся половым путём, зарождение нового организма осуществляется в процессе оплодотворения,а О. начинается с оплодотворённой яйцеклетки, или зиготы. У организмов, которым свойственно бесполое размножение, О. начинается с образования нового организма путём деления материнского тела или специализированной клетки, путём почкования, а также из корневища, клубня, луковицы и т.п. (см. Вегетативное размножение). В ходе О. каждый организм закономерно проходит последовательные фазы, стадии или периоды развития, из которых основными у организмов, размножающихся половым путём, являются: зародышевый (эмбриональный, или пренатальный), послезародышевый (постэмбриональный, или постнатальный) и период развития взрослого организма. В основе О. лежит сложный процесс реализации на разных стадиях развития организма наследственной информации, заложенной в каждой из его клеток. Обусловленная наследственностью программа О. осуществляется под влиянием многих факторов (условия внешней среды, межклеточные и межтканевые взаимодействия, гуморально-гормональные и нервные регуляции и т.д.) и выражается во взаимосвязанных процессах размножения клеток, их роста и дифференцировки. Закономерности О., причинные механизмы и факторы клеточной, тканевой и органной дифференцировки изучаются комплексной наукой — биологией развития, использующей, помимо традиционных подходов экспериментальной эмбриологии и морфологии, методы молекулярной биологии, цитологии и генетики. О. и историческое развитие организмов — филогенез — неразрывные и взаимно обусловленные стороны единого процесса развития живой природы. Первую попытку исторического обоснования О. сделал И. ф. Меккель. Проблема соотношения О. и филогенеза была поставлена Ч. Дарвином и разрабатывалась Ф. Мюллером,Э. Геккелем и др. Все связанные с изменением наследственности, новые в эволюционном отношении признаки возникают в О., но лишь те из них, которые способствуют лучшему приспособлению организма к условиям существования, сохраняются в процессе естественного отбора и передаются последующим поколениям, т. е. закрепляются в эволюции. Познание закономерностей, причин и факторов О. служит научной основой для отыскания средств влияния на развитие растений, животных и человека, что имеет важнейшее значение для практики растениеводства и животноводства, а также для медицины.

Вопрос№17. Формирование фенотипа в процессе онтогенеза.

Онтогенез- индивидуальное развитие организма, осуществляется на основе наследственной информации ,получаемой через поступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические ,физиологические и биологические свойства. В процессе развития организм закономерно меняет свои характеристики, оставаясь тем не менее целостной системой. Поэтому под фенотипом надо понимать совокупность свойств на всём протяжении индивидуального развития, на каждом этапе которого существуют свои особенности.

Ведущая роль в формировании фенотипа принадлежит наследственной информации, заключенный в генотипе организм. При этом простые признаки развиваются как результат определённого типа взаимодействия соответствующих аллельных генов. Вместе с тем существенное влияние на их формирование оказывает вся система генотипа. Формирование сложные признаков осуществляется в результате разнообразных взаимодействий неаллельных генов непосредственно в генотипе либо контролируемых ими продуктов. Стартовая программа индивидуального развития зиготы содержит также так называемую пространственную информацию.

Наряду с этим результат реализации наследственной программы, заключенный в генотипе особи, в значительной мере зависит от условий, в которых осуществляется в этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления. На стадии транскрипции контроль экспрессии отдельных генов осуществляется путём взаимодействия генетических или негенетических факторов. Следовательно, в формировании элементарных признаков организма- полипептидов- принимают участие генотип как система взаимодействующих генов и среда, в которой он реализируется.

В генетике индивидуального развития среда представляет собой сложное понятие. С одной стороны, это непосредственное окружение, в которой осуществляют свои функции отдельные гены и генотип в целом. Оно образовано всей совокупностью факторов внутренней среды организма: клеточное содержимое, характер прямых межклеточных взаимодействий , биологические активные вещества. Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной программы, обозначают как среду первого порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды второго порядка, как совокупности внешних по отношению к организму факторов

Вопрос №18. Способы регуляции гомеостаза.

Гомеостаз — подвижно-равновесное состояние какой-либо системы, сохраняемое путем ее противодействия нарушающим это равновесие внешним и внутренним факторам. Понятие "Гомеостаз" сложилось первоначально в физиологии с целью объяснить постоянство внутренней среды организма (крови, лимфы) и устойчивость его основных физиологических функций, что достигается благодаря механизмам саморегуляции. Эта идея была развита американским физиологом У. Кенноном в учении о "мудрости тела" как открытой системы, непрерывно поддерживающей свою стабильность. Получая сигналы об изменениях, угрожающих системе, организм включает устройства, продолжающие работать до тех пор, пока не удастся возвратить ее в равновесное состояние, к прежним значениям параметров. Принцип гомеостаза перешел из физиологии в кибернетику и другие науки, в т.ч. психологию, приобретя более общее значение принципа системного подхода и саморегуляции на основе обратных связей. Представление о том, что каждая система стремится к сохранению своей стабильности, было перенесено на взаимодействие организма с окружением. Такой перенос характерен, в частности, для необихевиоризма, считающего, что новая двигательная реакция закрепляется благодаря освобождению организма от потребности, нарушившей его гомеостаз; для концепции Ж. Пиаже, признающей, что умственное развитие происходит в процессе уравновешивания организма со средой; для теории "поля" К. Левина, согласно которой мотивация возникает в неравновесной "системе напряжений"; для гештальтпсихологии, отмечающей, что в случае нарушения баланса между компонентами психической системы она стремится к его восстановлению. Принцип гомеостаза, объясняя явление саморегуляции, не может, однако, раскрыть источник изменений психики и ее активности. 

Вопрос №19. Понятие о генах. Аллельные гены. Гомозигота и гетерозигота.

Ген – структурная и функциональная единица наследственности. Термин введен в 1909 г. австрийским биологом В. Иогансоном и сначала был известен как математическая характеристика открытых Г. Менделем в 1865 г. в эксперименте по скрещиванию реально существующих, независимых, комбинирующихся и расщепляющихся единиц наследственности. Сейчас ген рассматривается как участок хромосомы , состоящей из наследственного материала , отличающегося специфичностью функций. Специфика гена связана с различными сочетаниями входящих в их состав азотистых оснований и формируемых ими, составляющих код, которым зашифрована наследственная информация. Большинство генов обеспечивает формирование того или иного признака или принимает участие в формировании нескольких его признаков. Каждый признак, таким образом, находится в зависимости от одного или нескольких определенных генов.

Аллельные гены, аллели- различные формы того же гена, они занимают одно и то же место гомологичных хромосом и определяющие альтернативные состояния одной и той же признаки. Гены, как и хромосомы, парные. В каждой клетке диплоидного организма любой ген представлен двумя аллельными генами , один из которых организм получил от отца, другой - от матери. Исключение составляют половые клетки - гаметы, в которых содержится только один аллель данного гена. Аллельные гены - парные гены, или гены одной аллельных пары. Неаллельных гены - гены разных аллельных пар.

ГОМОЗИГОТА, клетка или особь, у которой два гена, определяющие какой-либо определённый признак, одинаковы. То есть пара аллелей – отцовский и материнский – идентичны. Напр., в опытах Г. Менделя по скрещиванию сортов гороха с разным цветом семян доминантным был аллель, контролирующий жёлтый цвет (А), а рецессивным – аллель, контролирующий зелёный цвет (а). В этом случае растение может быть гомозиготным по доминантному (АА) или по рецессивному (аа) аллелям. Гомозиготные организмы образуют половые клетки (гаметы) одного типа – только с аллелем А или только с аллелем а.  Гомозиготные формы (сорта, породы, линии) получают путём близкородственного скрещивания – инбридинга. Их используют в генетических исследованиях и в с.-х. практике, напр. для получения эффекта гетерозиса.

ГЕТЕРОЗИГОТА, клетка или особь, у которой два гена, определяющие какой-либо признак, различны. То есть аллельные гены (аллели) – отцовский и материнский – не одинаковы. Напр., в опытах Г. Менделя по скрещиванию сортов гороха с разной окраской семян в качестве родителей были использованы гомозиготные особи по доминантному гену жёлтой окраски (А) и гомозиготные особи по рецессивному гену зелёной окраски (а). Все полученные гибриды первого поколения имели наследственную структуру Аа, т. е. были гетерозиготами. Семена у них были жёлтого цвета, как и у гомозигот по доминантному гену.  Сравнение признаков гетерозиготных особей с признаками гомозиготных родителей позволяет изучать различные формы взаимодействия между аллелями одного гена (характер доминирования и др.). В целом гетерозиготность обеспечивает организмам большие жизнеспособность и приспособляемость, чем гомозиготность.

Вопрос №20. Понятие о гене. Свойства гена. Функции гена. Виды генов.

Ген – структурная и функциональная единица наследственности. Термин введен в 1909 г. австрийским биологом В. Иогансоном. Сейчас ген рассматривается как участок хромосомы , состоящей из наследственного материала , отличающегося специфичностью функций. Специфика гена связана с различными сочетаниями входящих в их состав азотистых оснований и формируемых ими триплетов , составляющих код, которым зашифрована наследственная информация. Большинство генов обеспечивает формирование того или иного признака или принимает участие в формировании нескольких его признаков. Каждый признак, таким образом, находится в зависимости от одного или нескольких определенных генов.

Свойства генов

Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание. Однако далеко не все изменения последовательности нуклеотидов приводят к изменению последовательности белка или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий, такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Свойства генов:

дискретность — несмешиваемость генов;

стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать;

множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

аллельность — в генотипе диплоидных организмов только две формы гена;

специфичность — каждый ген кодирует свой продукт;

плейотропия — множественный эффект гена;

экспрессивность — степень выраженности гена в признаке;

пенетрантность — частота проявления гена в фенотипе;

амплификация — увеличение количества копий гена.

Виды генов

Различают структурные гены (несут информацию о последовательности аминокислот в полипептиде) ирегуляторные гены (контролируют и регулируют деятельность структурных генов). Ген относительно постоянен.

Различают также гены аллельные и неаллельные гены. Аллельные гены могут быть доминантными, рецессивными и промежуточными, или комбинированными; неаллельные — эпистатичными, гипостатичными, комплементарными, или индифферентными.

По своей абсолютной локализации гены делятся на аутосомные (см. Аутосомы) и гены сцепленные с полом (см. Половые хромосомы). Изменения генов (мутации) являются источником изменчивости и приводят иногда к генным болезням.

Вопрос №21. Освоенные методы генетики.

К основным методам генетики относятся гибридологический, математический, цитологический.

Гибридологический метод представляет собой специфический метод генетики, который заключается в гибридизации и последующем учете гибридного потомства по изучаемым признакам. Гибридологический метод был разработан Г. Менделем, сформулировавшим правила этого метода:

  1. Скрещиваемые организмы должны принадлежать к одному виду.

  2. Скрещиваемые организмы должны четко различаться по отдельным признакам.

  3. Изучаемые признаки должны быть константны, т.е. воспроизводиться из поколения в поколение при скрещивании в пределах линии.

  4. Необходимы характеристика и количественный учет всех классов расщепления, если они наблюдаются у гибридов первого и последующих поколений.

Математический метод в биологии также впервые был применен Г. Менделем, который применил математические подходы как к изучению результатов скрещиваний, так и к построению гипотез и объяснению полученных результатов. С этого времени сравнение количественных данных эксперимента с теоретически ожидаемыми стало неотъемлемой частью генетического анализа. Математический анализ незаменим при изучении наследуемости количественных признаков, изучении изменчивости, при исследовании популяций.

Цитологический метод используется для изучения клетки, как основной единицы живой материи. Изучение строения хромосом вместе с гибридологическим анализом дали начало цитогенетическому методу.

Кроме этих методов широкое применение находят метод получения мутаций, гибридизации соматических клеток, культуры тканей и клеток, методы биотехнологии, биохимический, иммунологический, иммунохимический.

Генетика широко использует методы физики: оптические, седиментационные, меченых атомов в молекулярной генетике и генной инженерии и других направлениях. Разумеется, приведенные методы являются только частью методов, используемых в генетике. Особое место отводится разработке методов генетики человека. Современная наука в распоряжение исследователя представляет массу потенциальных возможностей, которые могут быть реализованы при конкретной программе исследований.

Вопрос №22. Понятие о наследственности.

Наследственность — это способность живых организмов передавать потомкам морфологические, физиологические, биохимические, зтологические признаки, особенности онтогенеза и обмена веществ. Благодаря наследственности обеспечивается материальная и функциональная преемственность в непрерывном ряде поколений. Внешним проявлением наследственности есть структурное и фенотипическое сходство родителей и потомков и всех особей, связанных родством. Сходство между родителями и детьми не ограничивается тем, что они имеют одинаковые видоспецифичные признаки. Часто дети похожи на родителей мельчайшими индивидуальными особенностями. Это связано с тем, что наследственность есть сложный длительный процесс воплощения генетической программы в процессе онтогенеза в признаки организма. По своей сути наследственность есть "повторение в последовательных поколениях одинаковых форм обмена". Обмен веществ контролируется ферментами, а их структура и структура белков контролируется нуклеиновыми кислотами. Потомки получают программу обмена в форме молекул ДНК. На этой основе они воспроизводят специфические признаки и свойства. То есть наследственность обусловливается генотипом.

Термин "генотип" был введен в науку Иогансоном в 1909 г. Генотип - совокупность генов организма, в более широком смысле - совокупность всех наследственных факторов организма, как ядерных, так и неядерных. Сочетание уникальных геномов , полученных от каждого из родителей, создает генотип, лежащий в основе генетической индивидуальности.

Понятия генотип и фенотип - очень важные в биологии. Как сказано выше, совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма составляет фенотип. На протяжении жизни организма его фенотип может изменяться, однако генотип при этом остается неизменным. Это объясняется тем, что фенотип формируется под влиянием генотипа и условий среды.

Слово генотип имеет два смысла. В широком смысле - это совокупность всех генов данного организма. Но применительно к опытам того типа, которые ставил Мендель, словом генотип обозначают сочетание аллелей, которые контролируют данный признак.

Таким образом, генотип - это: 

- характерная для данного индивидуума вся совокупность генетических (геномных) характеристик и 

- характеристика определенных пар аллелей , которые индивидуум имеет в исследуемом районе генома.

ФЕНОТИП - любой поддающийся наблюдению признак организма - морфологический, физический, поведенческий. Термин предложен в 1909 г. датским биологом В. Йоганнсеном. Фенотип - продукт взаимодействия генотипа и среды, но на разных уровнях организации - клеточном, органном, организменном - соотношение фенотипа и генотипа различно.

Согласно И. П. Павлову, фенотип - это склад деятельности нервной высшей, образуемый в результате комбинации врожденных особенностей и условий воспитания. Это понятие связано с понятием характера.

Вопрос №23. Правило чистоты гамет.

Правило чистоты гамет: половые клетки в результате мейоза получают половинные наборы хромосом и поэтому имеют только один аллель из данной пары - а или А. 

Предположение, что аллели, полученные гибридом от своих родителей, распределяются поровну между половыми клетками гибрида, не попадая оба в одну гамету, не разбавляясь и не смешиваясь, английский генетик Бэтсон в 1909 г. назвал гипотезой чистоты гамет.

При оплодотворении восстанавливается двойной набор хромосом и, следовательно, в одной клетке могут оказаться оба аллеля. При этом аллели могут оказывать разное влияние на развитие признака.

Цитологические основы генетики

В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль, что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные частицы свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Изучение хромосом у животных и растений привело к выводу, что каждый вид животных существ характеризуется строго определенным числом хромосом.

Открытый Э. ван Бенедоном (1883) факт, что число хромосом в клетках тела вдвое больше, чем в половых клетках, можно объяснить : поскольку при оплодотворении ядра половых клеток сливаются и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворения должно противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое.

В 1900 г. независимо друг от друга К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом.

Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттом и Бровери положили начало новому направлению генетики - хромосомной теории наследственности.

Вопрос №24Закономерности наследования признаков, установленные Менделем

Часть открытий из области основных закономерностей наследования признаков принадлежит Менделю. Он проводил опыты по гибридизации гороха. Он отбирал растения, отличающиеся парой альтернативных признаков: желтая или зелёная окраска зерна, гладкая или морщинистая кожура, красные или белые цветки. Проверяя стойкое наследование взятых признаков, т.е. выбирал чистые линии.

Мендель шел в своих исследованиях от простого к сложному. Он вначале анализировал наследование одной пары признаков . При скрещивании растений с желтыми и зелёными семенами в первом поколении (F1) всё потомство имело жёлтые семена. Зелёный – подавляемым . Один и тот же результат наблюдался при скрещивании ♂ жёлтых с ♀ зелёными, так и ♂ зелёных с ♀ желтыми. Такое единообразие гибридов F1 получило название правило доминирования или Первый закон Менделя.

При самоопылении гибридов F1 во втором поколении F2 наблюдалось расщепление 3:1, т.е. 3 жёлтых и 1 зелёный. Такая закономерность получила название Второй закон Менделя или закон расщепления.

Наблюдая описанные явления Мендель приходит к выводу, что за наследование признаков отвечает пара наследственных задатков . При изучении наследования одного или нескольких признаков говорят о генотипе или о фенотипе конкретных признаков. Гены могут находиться в организме в гомозиготном и гетерозиготном состоянии, образуя аллельные пары. При образовании гамет в каждую из них попадает только по одному из пары наследственных факторов, определяющих признак. Для лучшего понимания Пеннет предложил использовать решётку или таблицу. Анализ полученных данных показывает, что расщепление 3:1 – расщепление по фенотипу, а по генотипу 1:2:1. Отсюда следует, что сходные по фенотипу особи могут иметь разный генотип. И что бы проверить является ли гибрид гомозиготный или гетерозиготный проводят анализирующие скрещивание. Если при таком скрещивании всё потомство будет однотипным, значит мы имели дело с гомозиготой. Так же следует помнить, что второй закон Менделя носит статистический характер.

При изучении результатов дигибридного скрещивания, т.е. по 2 парам альтернативных признаков, Мендель наблюдал независимое наследование признаков (9:3:3:1). При полигибридном скрещивании расщепление можно выразить по формуле (3+1)n , где n – число пар альтернативных признаков. Закон независимого расщепления по парам неаллельных признаков – 3 закон Менделя.

Причина успеха Менделя в правильном выборе объекта, в разработке и применении принципа гибридологического анализа.

Его метод гибридологического анализа используется в генетике и сейчас.

  1. Организмы должны быть одного вида

  2. Чётко различаться по отдельным признакам

  3. Признаки должны быть константными, т.е. свободно передаваться из поколения в поколение.

  4. Необходима характеристика и количественный учёт всех классов расщепления потомства в первом и последующих поколениях.

То, что признаки не исчезают в F1 , а проявляются вновь в последующих поколениях, позволило Менделю сформулировать гипотезу о дискретном характере вещества наследственности.

Установленные Менделем закономерности наследования признаков получили цитологические обоснования после открытия хромосом.

Моногибридным называется скрещивание, при котором рассматривается наследование одной пары альтернативных признаков, детерминируемых одной парой генов.

При моногибридном скрещивании соблюдается первый закон Менделя , согласно которому при скрещивании гомозиготных организмов у их потомков F1 проявляется только один альтернативный признак, а второй находится в скрытом состоянии. Потомство F1 единообразно по фенотипу и генотипу. Согласно второму закону Менделя  при скрещивании гетерозигот в их потомстве F2 наблюдается расщепление по генотипу в соотношении 1:2:1 и по фенотипу в пропорции 3:1.

Вопрос №25.

Дигибридное скрещивание

Скрещивание, в котором участвуют две пары аллелей, генов, расположенных в разных, негомологичных хромосомах, называется дигибридным. При дигибридном скрещивании Г. Мендель изучал наследование двух пар признаков, за которые отвечают пары аллелей, лежащих в разных парах гомологичных хромосом.

Если в дигибридном скрещивании разные пары аллельных генов находятся в разных парах гомологичных хромосом, то пары признаков наследуются независимо друг от друга .

Рассмотрим опыт Г. Менделя, который привел его к открытию закона независимого наследования. Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам - окраски семян и формы семян . Доминантные признаки - желтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообразным.

При образовании гамет у гибрида (F1) из каждой пары аллельных генов в гамету попадет только один. При этом вследствие случайности расхождения отцовских и материнских хромосом в мейозе I аллель А может попасть в одну гамету с аллелем В или с аллелем b. Точно так же, как аллель а может объединиться в одной гамете с аллелем В или b . Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида равновероятно образование четырех сортов гамет: АВ, Ab, aB, ab, в равных количествах. Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета . В квадратики вписываются генотипы зигот, образующихся при слиянии гамет. Нетрудно подсчитать, что по фенотипу потомство делится на четыре группы в следующем отношении: 9 желтых гладких; 3 желтых морщинистых; 3 зеленых гладких; 1 зеленая морщинистая . Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. Иначе можно сказать, что расщепление по каждой паре генов идет независимо от других пар генов. Однако в отличие от закона расщепления, который справедлив всегда, закон независимого наследования проявляется только в тех случаях, когда пары аллельных генов расположены в разных парах гомологичных хромосом.

Законы Г. Менделя статистичны, они подтверждаются только в опытах с достаточно большим материалом (подсчеты сотен и тысяч особей).

Полигибридное скрещивание.

При полигибридном скрещивании у организмов F3 обнаруживается более сложное расщепление. При анализе данного явления законы Менделя могут быть большим подспорьем. В основе такого сложного наследования также лежит правило фенотипического расщепления в соотношении 3:1, которое имеет место у организмов F2, полученных моногибридным скрещиванием. Основную формулу расщепления можно записать для дигибридов в виде (3:1)2, для тригибридов (3:1)3 и, наконец, для полигибридов — (3:1)n. Эти формулы справедливы только в случаях, когда наследование идет при полном доминировании признаков. При наследовании признаков с неполным доминированием формулы расщепления примут вид (1:2:1)2, (1:2:1)3, (1:2:1)n. Вопрос №26. Сцепленное наследование. Сцепленное наследование  феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.

Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения, проведённые Томасом Морганом, показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана, Альфредом Стёртевантом в 1913 году на материале Drosophila melanogaster.

Расстояние между генами, расположенными в одной хромосоме, определяется по проценту кроссинговера между ними и прямо пропорционально ему. За единицу расстояния принят 1 % кроссинговера . Чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними будет происходить кроссинговер. Максимальное расстояние между генами, расположенными в одной хромосоме, может быть равно 49 сантиморганидам.

В начале XX столетия стало очевидным, что Г. Мендель открыл единые закономерности наследственности для всех живых организмов. Но вместе тем стали накапливаться сведения о том, что в некоторых случаях расщепление происходит не по правилам Г. Менделя. Например, у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого расщепления в потомстве в соотношении 3:1, и потомки остаются похожими на родительские особи. При анализе этого явления оказалось, что ген формы пыльцы и ген окраски цветка лежат в одной хромосоме.

Действительно, генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным расчетам у человека около 100 000 генов, а видов хромосом только 23. Таким образом, все десятки тысяч генов умещаются в этих хромосомах. Современнная хромосомная теория наследственности создана выдающимся американским генетиком Т. Морганом.

Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали что гены, находящиеся в одной хромосоме при мейозе попадают в одну гамету, т.е. наследуются сцепленно. Это явление получило название закона Моргана. Было также показано что у каждого гена в хромосоме есть строго определенное место — локус.

Вопрос №27. Хромосомная теория.

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ, одно из обобщений в генетике, утверждающее, что наследственные факторы расположены в хромосомах, передача которых от родителей потомкам обеспечивает в поколениях преемственность свойств и признаков у особей одного вида. Толчком к её развитию послужило переоткрытие в 1900 г. закономерностей наследования, установленных ранее Г. Менделем. Основы хромосомной теории заложили работы немецкого биолога Т. Бовери (1902–1907) и американского цитолога У. Сеттона (1902–1903), которые независимо друг от друга предположили, что гены расположены в хромосомах, и связали закономерности Менделя, описывавшие поведение наследственных факторов, с поведением хромосом во время мейоза и при оплодотворении. Таким образом, были вскрыты соответствия в данных генетики и цитологии. Детальная разработка хромосомной теории была произведена Т.Х. Морганом и его учениками. Изучая наследование окраски глаз у плодовой мушки дрозофилы, Морган показал, что цвет глаз – признак, сцепленный с полом, и что по характеру его наследования ген, определяющий этот признак, должен находиться в половой хромосоме. Так экспериментально была доказана связь конкретного гена с конкретной хромосомой. В дальнейшем было установлено, что многие признаки наследуются совместно – как один комплекс. Это означало, что контролирующие их гены образуют группы сцепления. Число таких групп сцепления оказалось равным гаплоидному числу хромосом, постоянному для каждого вида организмов. Затем Морган обнаружил, что сцепленное наследование признаков может нарушаться в результате кроссинговера во время мейоза. На основании детального исследования сцепления генов и кроссинговера Морган и его сотрудники разработали методы определения взаимного положения различных генов на хромосомах и построения генетических карт хромосом. Хромосомная теория нашла подтверждение и дальнейшее развитие в открытии химической природы гена, выяснении строения хромосом и в других достижениях молекулярной генетики.

Вопрос №28

Наследственность цитоплазматическая (внеядерная, нехромосомная, плазматическая, преемственность материальных структур  и функциональных свойств организма, которые определяются и

передаются факторами, расположенными в цитоплазме. Совокупность этих факторов - плазмагенов, или внеядерных генов, составляетплазмон. Плазмагены находятся в самовоспроизводящихся органеллах клетки -митохондрияхипластидах. Указанием на существование Наследственность цитоплазматическая служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основеМенделя законов. Цитоплазматические элементы, несущие плазмагены, расщепляются по дочерним клеткам беспорядочно, а не закономерно, какгены, локализованные в хромосомах. Плазмагены передаются главным образом через женскую половую клетку , так как мужская половая клетка почти не содержит цитоплазмы . Поэтому изучение Наследственность цитоплазматическая ведётся с использованием специальных схемскрещивания, при которых данный организм используется и как материнская, и как отцовская форм. У растений и животных различия, обусловленные Наследственность цитоплазматическая, сводятся в основном к преобладанию материнских признаков и проявлению определённогофенотипапри одном направлении скрещивания и его утрате при другом. Цитоплазматическая мужская стерильность (ЦМС), передающаяся по женской линии, широко используется для получения гетерозисных гибридных форм, главным образом кукурузы, а также некоторых др. с.-х. растений. Др. метод исследования Наследственность цитоплазматическая - «пересадка» ядра из одной клетки в другую. От Наследственность цитоплазматическая следует отличать так называемую инфекционную наследственность, т. е. передачу через цитоплазму симбиотических или слабо болезнетворных саморазмножающихся частиц , которые не являются нормальными компонентами клетки, необходимыми для её жизнедеятельности . Во всех изученных случаях плазмагены вхимическомотношении представляют собой ДНК, обнаруженную во многих самовоспроизводящихся органоидах . Определённая степень генетической автономии, свойственная носителям плазмагенов, сочетается с контролем над ними со стороны хромосомных генов. Установлено, что некоторые мутации пластид вызываются ядерными генами, контролирующими отчасти и функционирование пластид. Показано также, что количество ДНК в митохондриях недостаточно для того, чтобы нести всю информацию об их функциях и строении; т. о., и структура митохондрий, по крайней мере частично, определяется геномом. Ядерные и внеядерные гены могут взаимодействовать и при реализации фенотипа.

Вопрос №29 АЛЛЕЛЬНОЕ ВЗАИМОДЕЙСТВИЕ  Различают три вида неаллельного взаимодействия: доминирование, неполное доминирование и кодоминирование.  ДОМИНИРОВАНИЕ-простейшая форма взаимодействия - была открыта еще Менделем. При доминировании доминантный ген полностью подавляет проявление рецессивного гена. Например, при скрещивании растений гороха с круглыми АА и морщинистыми аа образуются только круглые семена в первом поколении, во втором происходит расщепление в соотношении 3 круглых на 1 морщинистый.  Возникает вопрос - почему один ген доминантный, а другой рецессивный? Рецессивный аллель гена может проявиться в результате мутации. Измененный ген либо не кодирует белок, либо кодирует белок меньшей активности. В данном примере рецессивный генотип не влияет на жизнеспособность, но если белок необходим для жизни данного организма, то мутантный ген является летальным.  Доминантные летальные аллели существуют в генофонде популяций многих видов. Рецессивные летальные гены не проявляются у гетерозиготного организма. Подсчитано, что человек гетерозиготен по 30 летальным рецессивным генам. Это объясняет тот факт, почему между потомками от браков среди близких родственников наблюдают высокую частоту летальных исходов.  НЕПОЛНОЕ ДОМИНИРОВАНИЕ-При этом типе взаимодействия генов доминирование носит промежуточный характер. Например, при скрещивании красноцветковых растений: А белоцветковых и а львиного зева в первом поколении у гибридов Аа розовая окраска. Во втором происходит расщепление; 1 красноцветковые к 2 розовоцветковым и к 1 белоцветковому.  Неполное доминирование объясняется тем, что один ген из аллельной пары не обеспечивает достаточного для нормального проявления его признака белкового продукта. При этой форме взаимодействия генов все гомозиготы и гетерозиготы сильно отличаются друг от друга по фенотипу.  КОДОМИНИРОВАНИЕ-Кодоминированием называют проявление в гетерозиготном состоянии признаков, обусловленных действием обоих аллелей, т. е. каждый из аллельных генов кодирует определенный белок, а в гетерозиготном состоянии проявляются оба.

Вопрос №31. Неполное доминирование.

Доминирование неполное

— один из видов взаимодействия аллельных генов, при котором один из аллелей (доминантный) в гетерозиготе не полностью подавляет проявление другого аллеля (рецессивного), и в F1 выражение признака носит промежу­точный характер. Так, при скрещивании ночной красавицы с красной окраской цветков (АА) с растением, имеющим белые Цветки (аа), в F1, все растения имеют промежуточную розовую окраску цветков (Аа). Неполное доминирование очень широко распространено в природе. Оно обнаружено при изучении наследования окраски цветков у многих растений, строения перьев у птиц, окраски шерсти у крупного рогатого скота и овец, ряда биохимических признаков у человека и др. Используя резуль­таты опытов с неполным доминированием признаков, против­ники теории о дискретности наследственности пытались доказать, что происходит смещение, растворение признаков. Однако у гибридов последующих поколений наблюдалось расщепление и раздельное, независимое наследование признаков, что несовместимо с гипотезой о непрерывности (слитной) наследственно­сти и смешении признаков и подтверждает справедливость ги­потезы «чистоты гамет.

Вопрос №30. Неаллельное взаимодействие генов.

Неаллельные гены — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между со­бой. При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов: комплементарность;эпистаз;полимерия. Комплиментарность. Комплементарно действие генов — это вид взаимодействия неаллельных генов, доминантные аллели кото­рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обу­словливает сферическую форму плодов, а рецессивных — удли­нённую. При наличии в генотипе одновременно доминантных ге­нов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фе­нотипу: из каждых 16 растений 9 будут иметь дисковидные пло­ды, 6 — сферические и 1 — удлинённые. Эпистаз Подавление действия одной аллельной пары генов геном другой, не аллельной им пары, называется эпистазом. Различают доминантный и рецессивный эпистаз. Если обычное аллельное доминирование можно представить в виде формулы А>а, То явление эпистаза выразится формулой А>В или А>В , когда доминантный или рецессивный ген одной аллельной пары не допускает проявления генов другой аллельной пары. Гены, подавляющие действие других, не аллельных им генов, называются Эпистатичными, А подавляемые — Гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном. ПРИМЕР: Разберем эпистатическое действие генов на примере наследования окраски зерна у овса . У этой культуры были установлены доминантные гены, определяющие черную и серую окраску зерна. Обозначим один из них буквой А, А второй — В. При этом можно представить себе скрещивание, в котором родительские формы имели генотипы A Abb и АаВВ . В генотипе растения первого поколения (АаВB) Содержатся доминантные гены и черной окраски А, И серой окраски В. Так как ген А Эпистатичен по отношению к гену В, Он не дает ему проявиться, и все гибриды F1 Будут черносемянными. В F1 Произойдет расщепление в отношении 12 черных : 3 серых: 1 белый. Такой результат расщепления легко понять, если представить себе отношение 12:3:1 как видоизменение типичного для дигибридных скрещиваний отношения 9:3:3:1. В девяти сочетаниях присутствуют оба доминантных гена А И В, Но ген серой окраски В Не может проявляться, и они дают черносемянные растения. В трех сочетаниях (AAbbAabb, Aabb) Ген черной окраски семян А Также обусловит развитие черносемянных растений. Эта группа по фенотипу будет совершенно сходна с первой, и, следовательно, из каждых 16 растений 12 будут черносемянными. В трех сочетаниях (ааВВ, ааВB, ааВB) Доминантный ген В При отсутствии эпистатичного гена А Может проявить доминантное действие по отношению к своему рецессивному аллелю b, И разовьются растения с серыми семенами. Один генотип (Aabb) Представляет собой новую комбинацию, в которой проявится белая окраска зерна, так как отсутствуют оба доминантных гена. Полимерия. Полимерия — взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс. Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных алле­лей генов, тем сильнее выражен тот или иной признак. Расщепле­ние в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой , седьмой и т.п. строчкам в треугольнике Паскаля. При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1. Пример полимерии — наследование цвета кожи у людей, который зависит от четырёх генов с кумулятивным эффектом.

Вопрос №32. Генетиув пола. Сцепленное с полом наследование.

Пол - совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей. Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. В клетках организма человека хромосомы составляют парные диплоидные наборы. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков и различается по одной паре хромосом . Одинаковые хромосомы этой пары назвали X -хромосомой, непарную, отсутствующую у другого пола — У -хромосомой; остальные, по которым нет различий, — аутосомами (А).

Клетки женщины содержат две одинаковые половые хромосомы, которые обозначаются XX, у мужчин они представлены двумя непарными хромосомами X и Y. Таким образом, набор хромосом мужчины и женщины отличается только одной хромосомой: хромосомный набор женщины содержит 44 аутосомы + XX, мужчины — 44 аутосомы + XY.

Во время деления и созревания половых клеток у человека образуются гаметы с гаплоидным числом хромосом: яйцеклетки, как правило, содержат 22 + Х-хромосомы. Таким образом, у женщин образуется только один тип гамет . У мужчин гаметы содержат 22 + X или 22 + Y хромосом, и образуется два типа гамет . Если при оплодотворении в яйцеклетку попадает сперматозоид с Х-хромосомой, формируется зародыш женского пола, а с Y-хромосомой — мужского пола.Следовательно, определение пола человека зависит от наличия в мужских половых клетках — сперматозоидах, оплодотворяющих яйцеклетку, X- или Y-хромосом.

Наследование, сцепленное с полом. У многих организмов есть специальные хромосомы, которые называют половыми. Их соединение в зиготе обусловливает женский или мужской пол особи. Таким образом, пол особи формируется чётко во время оплодотворения и зависит от того, какие именно гаметы в нём принимают участие. У человека и дрозофилы оказался именно такой механизм определения пола. Самки дрозофилы – гомогаметны (XX), так как несут две огромные Х- хромосомы, полученные от матери и отца, самцы гетерогаметны (ХУ), поскольку имеют огромную Х-хромосому от матери и крошечную У- хромосому от отца. Что называют наследованием, сцепленным полом. Исходя из того, что мы уже знаем о существовании групп сцепления и явлении сцепленного наследования, становится ясно, почему некоторые признаки человека или дрозофилы бывают закодированными только в хромосомах, определяющих пол, то есть представленными или только у самцов, или только у самок. Такие характеристики и свойства организмов называют признаками, сцепленными с полом. Гены, ответственные за формирования этих признаков, локализованы в половых хромосомах. Оказывается, в Х-хромосоме имеются как гомологические участки, которые содержат аллельные гены, так и участки, которые не имеют аллельных генов во второй половой хромосоме. Именно благодаря гомологическим участкам половые хромосомы. способны к конъюгации. В Х-хромосоме участок, несущий неаллельные гены, намного больше, поскольку сама Х-хромосома намного крупнее У - хромосомы. В У – хромосоме этот участок меньше, но тоже имеется. Признаки, развитие которых определяют гены, расположены в негомологическом участке Х-хромосомы, называю сцепленными с полом. Таких признаков у человека описано около 200. кроме того, существуют ряд генов, которые есть только в У - хромосоме, но отсутствуют в Х-хромосоме. Интересным также является и то обстоятельство, что фенотипическое проявления генов, находящихся в половых хромосомах, намного чаще наблюдается у мужчин, чем у женщин. Этому имеются две причины. Отсутствие гомологии участка У – хромосомы, в котором содержатся особые гены, на Х-хромосоме. Не случайно здесь содержатся, гены, отвечающие за «мужские» признаки. Вполне естественно, что в У- хромосоме локализован ген, который определяет развитие мужского пола. Но, кроме того, здесь есть и другие гены, которые не имеют гомологов на Х – хромосоме. У человека это гены, отвечающие за оволосение ушной раковины, развитие перепонки между пальцами ног и др. Понятно, что такие признаки передаются только от отца сыну и ни при каких условиях не могут возникнуть у женщин, поскольку женский пол лишен У – хромосомы и, соответственно, этих генов. Отсутствие гомологии участку Х – хромосомы на У – хромосоме. Гены, сцепленные с Х – хромосомой, имеют очень разное фенотипическое проявление. В том случае, если признак определяется рецессивным геном, у женщины он фенотипически проявится только в случае рецессивной гомозиготы – ведь всегда имеется вторая Х – хромосома, которая может «подстраховать» своим доминантным аллелем и не дать развиться рецессивному признаку. У мужчин такой «подстраховки» в виде аллельной пары нет, поэтому все рецессивные аллели, которые находятся в их единственной Х – хромосоме, проявляются фенотипически. Типичным случаем наследования гена, сцепленного с Х – хромосомой, является гемофилия – заболевание, характеризующееся несвертываемостью крови. Её появление вызвано действием рецессивного мутантного гена. Дальтонизм – неспособность различать красный и зелёный цвета.  Что такое тельце Бара и почему возникают кошки черепахового окраса. Очень интересным примером наследования признаков , сцепленных с полом, является окрас домашней кошки. Вообще генетика окраски кошек – достаточна сложная область, поскольку любой фенотип, за исключением чистых альбиносов, является результатом взаимодействия многих аллельных е неаллельных генов, определяющих химическую формулу пигмента, цвет шерсти, интенсивность окраски и длину волосков, узор на теле и так далее. Признаки, зависимые от пола. Кроме признаков, сцепленных с полом, имеются признаки, зависимые от пола. гены, которые определяют эти признаки, «включаются» под действием половых гормонов. Эти гены могут находится не только в половых, но и в любых других хромосомах, которые называют аутосомами. Например, ген, определяющий облысение, локализован в аутосоме, и его проявление зависит только от мужских  половых гормонов. Именно поэтому у мужчин этот ген действует как доминантный, а у женщин – как рецессивный. Признаки, которые кодируются генами, находящимися в половых хромосомах, принято называть признаками, сцепленными с полом. Фенотипическое проявление генов, находящихся в половых хромосомах, намного чаще наблюдается у мужчин, чем у женщин.

Вопрос №33. Генотип как целостная система. Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга.  Исходя из этого, может сложиться мнение, что существует довольно прочная связь между определенным геном и определенным признаком, что в большинстве случаев отдельный ген определяет фенотипическое проявление признака. Но было накоплено много фактов, показывающих, что во многих случаях числовые отношения при расщеплении в потомстве гибридов не соответствуют установленным Менделем. Например, при дигибридном скрещивании в поколении F2 вместо соотношений 9 : 3 : 3 : 1, появляются соотношения 9 : 7, 9 : 3 : 4, 12 : 3 : 1, 13 : 3 и другие.  Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа), и развитие каждого организма есть результат воздействия всего генотипа.

Вопрос №35.Понятие о популяции. Генофонд.

Понятие о популяции В природе каждый существующий вид представляет сложный комплекс или даже систему внутривидовых групп, которые охватывают в своем составе особей со специфическими чертами строения, физиологии и поведения. Таким внутривидовым объединением особей и является популяция. Термин «популяция» был впервые введен в 1903 г. датским ученым Иогансеном для обозначения «естественной смеси особей одного и того же вида, неоднородной в генетическом отношении». В дальнейшем этот термин приобрел экологическое значение, и им стали обозначать население вида, занимающего определенную территорию. По определению С. С. Шварца (1980), популяция — это элементарная группировка организмов определенного вида, обладающая всеми необходимыми условиями для поддержания своей численности необозримо длительное время в постоянно изменяющихся условиях среды. Термин «популяция» в настоящее время используют в узком смысле слова, когда говорят о конкретной внутривидовой группировке, населяющей определенный биогеоценоз, и широком, общем смысле, для обозначения обособленных групп вида независимо от того, какую территорию она занимает и какую генетическую информацию несет.

Популяция является генетической единицей вида, изменения которой осуществляет эволюция вида. Как группа совместно обитающих особей одного вида, популяция выступает первой над-организменной биологической макросистемой. У популяции приспособительные возможности значительно выше, чем у слагающих ее индивидов. Популяция как биологическая единица обладает определенной структурой и функцией. Структура популяции характеризуется составляющими ее особями и их распределением в пространстве. Функции популяции аналогичны функциям других биологических систем. Им свойствен рост, развитие, способность поддерживать существование в постоянно меняющихся условиях, т. е. популяции обладают конкретными генетическими и экологическими характеристиками .

ГЕНОФОНД, совокупность всех генов или генотипов в популяции или группе популяций какого-либо вида организмов. Генофонд достаточно большой популяции, в которой происходит свободное скрещивание организмов, обладает определённой целостностью и устойчивостью: частоты встречаемости тех или иных генов (аллелей) и генотипов поддерживаются в популяции в относительном равновесии. Вместе с тем, если популяция подвергается действию т. н. элементарных факторов эволюции (мутаций, изоляции,естественного отбора и др.), происходит нарушение этого равновесия. Со временем устойчивое изменение частот генов (микроэволюция) может дать толчоквидообразованию.  Термин «генофонд» употребляют не только по отношению к природным популяциям. Напр., говорят о генофонде какой-либо породы домашних животных, сорта культурного растения или о генофонде всех пород и сортов. Необходимость сохранения генофонда всех живых существ Земли вытекает из признания генетической уникальности, неповторимости биологических видов, каждый из которых есть результат длительной эволюции.  Изучение генофонда человечества важно для решения многих проблем антропологии и медицины.

Вопрос №34. Закон Харди-Вайберга.

— основа математических построений генетики популяций и современной эволюционной теории. Сформулирован независимо друг от друга математиком Г. Харди и врачом В. Вайнбергом в 1908 г. Этот закон утверждает, что частоты аллелей и генотипов в данной по­пуляции будут оставаться постоянными из поколения в поколение при выполнении следующих условий:

1) численность особей популяции достаточно велика (в идеале — бесконечно велика),

2) спаривание происходит случайным образом (т. е. осуществ­ляется панмиксия),

3) мутационный процесс отсутствует,

4) от­сутствует обмен генами с другими популяциями,

5) естественный отбор отсутствует, т. е. особи с разными генотипами одинаково плодовиты и жизнеспособны. Иногда этот закон форму­лируют иначе: в идеальной популяции частоты аллелей и геноти­пов постоянны. Математи­ческая модель закона отвечает формуле:

p2+2pq+q2=1

Она выводится на основе следующих рассуждений. В качестве примера возьмем простейший случай — распределение двух ал­лелей одного гена. Пусть два организма являются основателями новой популяции. Один из них является доминантной гомозиго­той (АА), а другой — рецессивной гомозиготой (аа). Естественно, что все их потомство в F1 будет единообразным и будет иметь генотип (Аа). Далее особи F1 будут скрещиваться между собой. Обозначим частоту встречаемости доминантного аллеля (А) буквой p, а рецессивного аллеля (а) — буквой q. Поскольку ген представлен всего двумя аллелями, то сумма их частот равна единице, т. е. р + q = 1. Рассмотрим все яйцеклетки в данной популяции. Доля яйцеклеток, несущих доминантный аллель (А), будет соответствовать частоте этого аллеля в популяции и, сле­довательно, будет составлять р. Доля яйцеклеток, несущих ре­цессивный аллель (а), будет соответствовать его частоте и со­ставлять q. Проведя аналогичные рассуждения для всех сперматозоидов популяции, придем к заключению о том, что до­ля сперматозоидов, несущих аллель (А), будет составлять р, а несущих рецессивный аллель (а) — q. Теперь составим решетку Пеннета, при этом при написании типов гамет будем учитывать не только геномы этих гамет, но и частоты несомых ими алле­лей. На пересечении строк и столбцов решетки мы получим генотипы потомков с коэффициентами, соответствующими часто­там встречаемости этих генотипов.

Из приведенной решетки видно, что в F2 частота доминантных гомозигот (АА) составляет р, частота гетерозигот (Аа) — 2pq, а рецессивных гомозигот (аа) — q. Поскольку приведенные гено­типы представляют собой все возможные варианты генотипов для рассматриваемого нами случая, то сумма их частот должна равняться единице, т. е.

p2+2pq+q2=1

Главное применение закона Харди—Вайнберга в генетике при­родных популяций — вычисление частот аллелей и генотипов. Рассмотрим пример использования этого закона в генетических расчетах. Известно, что один человек из 10 тыс. является альби­носом, при этом признак альбинизма у человека определяется одним рецессивным геном. Давайте вычислим, какова доля скрытых носителей этого признака в человеческой популяции. Если один человек из 10 тыс. является альбиносом, то это зна­чит, что частота рецессивных гомозигот составляет 0,0001, т. е. q2 = 0,0001. Зная это, можно определить частоту аллеля альби­низма q, частоту доминантного аллеля нормальной пигмента­ции р и частоту гетерозиготного генотипа (2pq). Люди с таким генотипом как раз и будут скрытыми носителями альбинизма, несмотря на то что фенотипически этот ген не будет у них прояв­ляться и они будут иметь нормальную пигментацию кожи.

Из приведенных простых расчетов видно, что, хотя число альби­носов крайне невелико — всего лишь один человек на 10 тыс., ген альбинизма несет значительное количество людей — около 2% . Иными словами, даже если признак фенотипически про­является очень редко, то в популяции присутствует значитель­ное количество носителей этого признака, т. е. особей, имеющих этот ген в гетерозиготе.

Благодаря открытию закона Харди—Вайнберга процесс микроэволюции стал доступен непосредственному изучению: о его ходе можно судить по изменениям из поколения в поколение частот генов (или генотипов). Таким образом, несмотря на то что этот закон действителен для идеальной популяции, которой нет и не может быть в природе, он имеет огромное практическое значение, так как дает возможность рассчитать частоты генов, изменяющиеся под влиянием различных факторов микроэволюции.

Вопрос №36. Понятие о факторах эволюции

 Факторы эволюции: основные понятия и термины Факторы эволюции – движущая сила, вызывающая и закрепляющая изменения в популяциях как элементарных единицах эволюции. Популяцией называют сообщество особей одного вида, занимающих определенную территорию и связанных друг с другом родственными узами. Вид – совокупность географически и экологически сходных популяций, способных в природных условиях скрещиваться между собой, обладающих общими морфофизиологическими признаками, биологически изолированных от популяций других видов.  Фенотип — это вся совокупность признаков и свойств любого индивидуума — является результатом взаимодействия между генотипом и средой. Под генотипом понимают взаимно связанную систему единиц наследственности , наследст­венную программу развития.

Каждая особь развивается на основе генотипа, унаследованного от родителей. Генотип определяет особенности ее развития, ее взаимоотношения с внешней средой, в том числе и возможность адаптивных модификаций в ответ на изменение внешних условий. Но как бы ни менялась особь, ее генотип остается неизменным. Таким образом, элементарной единицей эволюции является не особь, а популяция. Совокупность генотипов всех особей в популяции называют генофондом. В ходе эволюции меняется набор генотипов в генофонде популяций. Одни генотипы распространяются, а другие становятся редкими и постепенно исчезают.        Эффективность размножения и распространения в популяции каждого конкретного генотипа зависит от того, насколько фенотип особи, созданной на его основе, соответствует тем условиям, которые существуют в то время и в том месте, где живет эта особь. Если особь доживает до размножения и производит потомков, то она передает им полностью или частично тот генотип, который позволила ей это сделать, и в следующем поколении носителей этого «удачного» генотипа становится больше. Ее генотип распространяется в генофонде популяции. Если особь погибает до размножения или не оставляет потомков, то вместе с ее смертью пресекается распространение и ее генотипа. В следующем поколении уже будет относительно меньше носителей этого генотипа, не подходящего к тем условиям, в которых живет популяция. Однако условия жизни изменяются постоянно и непредсказуемо. Изменяются климат, ландшафт, характеристики других видов (хищников, жертв, паразитов, конкурентов), с которыми взаимодействуют особи данной популяции, изменяется численность и плотность самой популяции. Соответственно изменяется и полезность фенотипов. То, что было полезным в предыдущем поколении, может оказаться вредным в последующем и наоборот.    Условия жизни меняются не только во времени, но и в пространстве. Каждый вид занимает определенную территорию, которая называется ареалом. Иногда ареал вида ограничивается небольшим островком, а иногда охватывает целые континенты. Условия жизни особей из разных частей ареала широко распространенных видов сильно различаются. Генотипы, которые полезны, например, на севере ареала, могут оказаться вредными на юге. То, что хорошо в долине, плохо в горах, и наоборот. В каждой популяции отбираются те генотипы, которые обеспечивают наилучшую адаптацию их носителей к местным условиям. Частота генотипов, которые обеспечивают выживание в долинах, увеличивается в долинных популяциях и уменьшается в горных. Формируются генетические различия между популяциями. Однако между популяциями одного вида постоянно происходит обмен особями и, следовательно, генетическими программами. Миграции животных, перенос пыльцы растений, спор грибов и микроорганизмов ведет к постоянному перемешиванию генетического состава популяций, к уменьшению различий между популяциями и к увеличению разнообразия внутри популяций. Весь спектр возможных измене­ний данного генотипа при разных условиях развития получил назва­ние нормы реакции. Таким образом, можно сказать, что наследуется не признак, а норма реакции генотипа.         Не остаются постоянными и сами генотипы. Отдельные их элементы - гены – также меняются со временем. Разные мутации в разных генах возникают у разных особей, меняя при этом генотипы потомков этих особей. Все организмы с половым размножением передают потомкам свои генотипы не полностью, а частично - каждый потомок получает половину генов от матери и половину от отца и оказывается носителем уникальной комбинацией аллелей, полученных от родителей. Каждая особь имеет уникальный генотип, который лишь частично передается (или не передается вовсе) ее потомкам.         Таким образом, процесс эволюции можно описать как изменение частот разных аллелей в популяциях. Естественно, это будет неполное и сильно упрощенное описание эволюции, но такой подход позволит яснее представить, какие факторы и в какой степени определяют эволюционный процесс. 

Вопрос №37. Генетический груз.

Генетический груз в его широком смысле - это всякое снижение приспособленности популяции в силу генетической изменчивости. Дать количественную оценку гене­тического груза, определить его подлинное влияние на популяционную приспособленность - сложная задача. По предложению Ф. Г. Добжанского носителями генетического груза считаются индивидуумы, приспособленность которых более чем на два стан­дартных отклонения ниже средней приспособленности гетерозигот. Принято выделять три вида генетического груза: мутационный, субстиционный и сбалансированный. Общий генетиче­ский груз слагается из этих трех видов груза. Мутационный груз - это та доля общего генетического груза, которая возникает за счет му­таций. Однако, поскольку большинство мутаций носят вредный ха­рактер, то естественный отбор направлен против таких аллелей и час­тота их невелика. Они поддерживаются в популяциях в основном благодаря вновь возникающим мутациям и гетерозиготным носителям. Генетический груз, возникающий при динамическом изменении частот генов в популяции в процессе замены одного аллеля другим, называется субстиционны грузом. Такое заме­щение аллелей обычно происходит в ответ на какое-либо изменение в условиях среды, когда ранее неблагоприятные аллели становятся бла­гоприятными.При этом частота одного аллеля уменьшается по мере увеличе­ния частоты другого.

Болезни с наследственным предрасположением имеют отличия от генных болезней, которые заключаются в необходимости влияния на организм человека факторов внешней среды, чтобы эти болезни проявились. По генетической природе болезни с наследственным предрасположением делятся на 2 группы.

1. Моногенные болезни с наследственным предрасположением.

Эта группа болезней характеризуется тем, что предрасположение определяется только одним геном, т. е. оно связано с мутацией этого гена. К ней относят: нейрофиброматоз,  синдром Марфан, семейную гиперхолестеринемию, несовершенный остеогенез, атрофическую миотонию, ахондроплазию, аденоматозный полипоз толстой кишки, болезнь Гентингтона, поликистоз почек, муковисцидоз, гемоглобинопатии. Для проявления признаков болезни необходимо обязательное воздействие фактора внешней среды. Этот фактор обычно точно идентифицируется и по отношению к данной болезни рассматривается как специфический.

2. Полигенные болезни с наследственным предрасположением.

Эта группа заболеваний определяется несколькими генами, каждый из которых является скорее нормальным, чем патологически измененным. Определение этих генов представляется весьма сложной задачей. К ней относятся: сахарный диабет, подагра, расщелина губы, расщелина неба, которые носят семейный характер. Свое патологическое проявление они осуществляют при взаимодействии с целым комплексом факторов внешней среды. Такие болезни носят название мультифакториальных, т. е. развиваются под влиянием большого количества факторов, как внешних, так и внутренних. При этом относительная роль генетических факторов и факторов внешней среды различна не только для данной болезни, но и для каждого индивидуального случая заболевания.

Указанные особенности делают эти болезни разными и в генетическом отношении, и по значимости в патологии человека. Первая группа болезней относительно немногочисленна, к ним применимы методы менделевского генетического анализа, их профилактика и лечение достаточно определенны и в ряде случаев эффективны. Учитывая главную роль среды в их проявлении, эти болезни рассматриваются как наследственно обусловленные патологические реакции на действие внешних факторов.

Мультифакториальные болезни составляют 90% хронических неинфекционных болезней различных систем и органов человека. Анализ этих заболеваний по уточнению роли индивидуальных генов и их взаимодействия с факторами внешней среды оказывается весьма трудной задачей, поэтому в их лечение и профилактику генетика до настоящего времени не внесла заметного вклада.

В указанной особенности мультифакториальных болезней заключается сложность генетического анализа, ограниченные возможности клинико-генеалогического и близнецового методов исследования, необходимость применения сложных математико-биологических методов для выяснения роли конкретных генов и факторов внешней среды в развитии данных болезней. Многочисленные материалы генеалогического и близнецового анализов, накопленные за годы изучения болезней с наследственным предрасположением, свидетельствуют только о значении наследственности в возникновении данной болезни, но не расшифровывают ни генов, ни типа их передачи.

Из особенностей развития мультифакториальных болезней следует широкое разнообразие их проявлений от едва заметных и даже скрытых форм до тяжело протекающих и трудно поддающихся терапии. Разнообразие генетической основы каждой болезни, исходя из индивидуальности каждого организма, позволяет объяснить такие особенности мультифакториальных болезней, как изменчивость (даже в пределах одной семьи) возраста начала заболевания, его развития, спектра проявлений болезни и степени их выраженности. С этими особенностями связаны также значительные различия в частоте разных болезней и их форм в пределах популяции.

Вопрос №38. Фенотипическая изменчивость.

Фенотипическая изменчивость является не наследуемым типом изменчивости, т. е. это различия между микроорганизмами, одинаковыми по генотипу. Эта изменчивость возникает в результате постоянного воздействия на клетку изменяющихся факторов среды обитания. Сходные по генотипу, микроорганизмы могут существенно различаться по фенотипу, т. е. по способу проявления наследственных признаков. На формирование фенотипа существенное влияние оказывают факторы внешней среды. Известно, что генотипически идентичные организмы в различных условиях существования в определенной степени различаются по своим признакам. Например, изменение содержания жира в молоке животных или массы тела в зависимости от их кормления, изменение количества эритроцитов в крови в зависимости от порциального давления кислорода.

Модификации представляют собой изменения, которые поддерживаются пока действует неблагоприятный фактор. Так, образование L-форм бактерий, лишенных клеточной стенки, происходит под влиянием химиотерапевтических веществ (пенициллина, стрептомицина и т. д.). при снятии действия антибиотиков на культуру бактерий происходит реверсия микроорганизмов в исходные формы. Фенотипическое проявление признака под влиянием условий внешней среды возможно в определенных пределах, называемых нормой реакции, которая допустима генотипом организмов. Некоторые признаки характеризуются широкой нормой реакции. В основном, это количественные признаки (масса микробной клетки, ее величина, пигментация колоний). Фенотипическое проявление информации, заключенной в генотипе, характеризуется показателями пенентрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации, а экспрессивность характеризует степень выраженности признака. Различают длительную модификацию, которая проявляется в течение нескольких поколений и кратковременную, при которой изменения исчезают при исчезновении действующего фактора внешней среды.

Примеры фенотипической изменчивости:

У человека:

1) увеличение уровня эритроцитов при подъеме в горы

2) увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей

3) развитие костно-мышечной системы в результате тренировок шрамы (пример морфоза)

У насекомых и других животных:

1) изменение окраски у колорадского жука вследствие длительного влияния на их куколки высоких или низких температур

2) смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца)

3) различная окраска бабочек-нимфалид (например, Araschnia levana), развивавшихся при разной температуре

У растений:

1) различное строение подводных и надводных листьев у водяного лютика, стрелолиста и др.

2) развитие низкорослых форм из семян равнинных растений, выращенных в горах

У бактерий:

1) работа генов лактозного оперона кишечной палочки (при отсутствии глюкозы и при присутствии лактозы они синтезируют ферменты для переработки этого углевода)закономерности модификационной изменчивости:

1) Вариационный ряд. Ранжированное отображение проявления модификационной изменчивости -- вариационный ряд -- ряд модификационной изменчивости свойства организма, который состоит из отдельных свойств видоизменений, размещенных в порядке увеличения или уменьшения количественного выражения свойства (размеры листка, изменение интенсивности окраски шерсти и т. д.). Единичный показатель соотношения двух факторов в вариационном ряде (например, длина шерсти и интенсивность ее пигментации) называется варианта. Например, пшеница, растущая на одном поле, может сильно отличаться количеством колосьев и колосков в силу различных показателей почвы, увлажненности на поле. 

2) Вариационная кривая. Графическое отображение проявления модификационной изменчивости -- вариационная кривая -- отображает как диапазон вариации свойства, так и частоту отдельных вариант. Из кривой видно, что наиболее распространены средние варианты проявления признака . Причиной этого, является действие факторов окружающей среды на ход онтогенеза. Некоторые факторы подавляют экспрессию генов, другие же, наоборот, усиливают. Почти всегда эти факторы, одновременно действуя на онтогенез, нейтрализуют друг друга, то есть ни уменьшения, ни увеличения значения признака не наблюдается. Это и является причиной, по которой особи с крайними выражениями признака встречаются в значительно меньшем количестве, чем особи со средней величиной. Например, средний рост мужчины -- 175 см -- встречается в европейских популяциях наиболее часто. При построении вариационной кривой можно рассчитать величину среднеквадратичного отклонения и, на основе этого, построить график среднеквадратичного отклонения от медианы -- наиболее часто встречающуюся величину признак

Вопрос №39. Понятие об экологических факторах.

Экологические факторы - это любые факторы среды, на которые организм реагирует приспособительными реакциями.

Среда - одно из основных экологических понятий, под которым подразумевается комплекс окружающих условий, влияющих на жизнедеятельность организмов. В широком смысле под окружающей средой понимают совокупность материальных тел, явлений и энергии, влияющих на организм. Возможно и более конкретное, пространственное понимание среды как непосредственного окружения организма - его среда обитания. Среда обитания - это все то, среди чего живет организм, это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное влияние. Т.е. элементы среды обитания, которые для данного организма или вида не безразличны и так или иначе влияют па него, являются по отношению к нему факторами.

Составные части среды многообразны и изменчивы, поэтому живые организмы постоянно приспосабливаются и регулируют свою жизнедеятельность в соответствии с происходящими вариациями параметров внешнего окружения. Такие приспособления организмов носят название адаптации и позволяют им выживать и размножаться.

Все экологические факторы делят на Абиотические факторы- прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).Биотические факторы- все формы влияния на организм со стороны окружающих живых существ (микроорганизмов, влияние животных на растения и наоборот).Антропогенные факторы- разнообразные формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Экологические факторы воздействуют на живые организмы

как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие структурно-функциональные изменения в организмах, и как сигналы, свидетельствующие об изменениях других факторов среды.

При этом можно установить общий характер воздействия экологических факторов на живой организм.Любой организм имеет специфический комплекс приспособлений к факторам среды и благополучно существует лишь в определенных границах их изменяемости. Наиболее благоприятный для жизнедеятельности уровень фактора называется оптимальным.

Вопрос№40. Мутагенные факторы.

В естественных условиях мутация появляется под влиянием факторов

внешней и внутренней среды и обозначается термином «естественные мутации».

Причиной генных, или так называемых точечных, мутаций является замена

одного азотистого основания в молекуле Д.Н.К. на другое, потеря, вставка,

или перестановка азотистых оснований в молекуле Д.Н.К. Отсюда следует - ген

мутирующий у человека могут развиться патологические состояния, патогенез

которого различен.

На факторы вызывающие мутации на генном уровне оказало

соответствующее влияние окружающей среды . Подобные заболевания чаще проявляются при постоянном

воздействии неблагоприятных или вредных факторов окружающей среды

. Мутация гена может повлечь за собой

нарушение синтеза белков, выполняющих пластические функции. Вероятная

причина таких заболеваний синдром Элерса - Данлоса.

В стадии изучения находится заболевания, в основе которых лежит

недостаточность механизмов восстановления измененной молекулы Д.Н.К.

Генная мутация может привести к развитию иммунодефецит-ных болезней

. Причиной

аномальной структуры гемоглобина являе-тся замена в молекуле остатка

глутаминовой кислоты на остаток валина.

Известен ряд мутаций генов, контролирующих синтез факто-ров

свертывания крови.

Генные мутации могут быть причиной нарушения транспорта различных

соединений через клеточные мембраны. Они связаны с нарушением функций

мембранных механизмов и с дефектами в некоторых системах.

Если мутация на генном уровне возникает при действии различных физических.,

химических, биологических факторов, то это называют мутагенезом .

Основой мутации являются первичные повреждения в молекуле Д.Н.К.

Соседние файлы в предмете Биология