Скачиваний:
417
Добавлен:
28.09.2016
Размер:
444.12 Кб
Скачать

2.2 Углерод-углеродные композиционные материалы

Композиционные материалы системы углерод-углерод впервые были созданы в начале 60-х годов прошлого столетия одновременно с появлением высокопрочных углеродных волокон. Способ получения волокон из углерода – неплавкого и нерастворимого вещества – подсказан впервые Эдисоном и Сваном. Им удалось, нагревая органические волокна в определенных условиях, не разрушать их, а превращать в углеродные. Этот же принцип был использован в конце пятидесятых годов прошлого века, когда независимо друг от друга, в СССР, США и Японии развернулись исследования, положившие начало созданию промышленности углеродных волокнистых материалов (УВМ). За прошедшие годы в качестве исходного сырья для этих целей были испробованы практически все промышленные, а так же ряд специально полученных волокон. Однако большинство из них не удовлетворяло предъявленным требованиям, основные из которых – неплавкость или легкость ее придания, выход готового волокна и его высокие показатели.

Углерод-углеродные композиционные материалы (УУКМ) содержат углеродный армирующий элемент в виде дискретных волокон, непрерывных нитей или жгутов, войлоков, лент, тканей с плоским и объемным плетением, объемных каркасных структур. Волокна располагаются хаотически, одно-, двух- и трехнаправленно, принципиальные схемы расположения волокон в УУКМ представлены на рис. 2.

Углеродная матрица объединяет в одно целое армирующие элементы в композите, что позволяет наилучшим образом воспринимать различные внешние нагрузки. Определяющими факторами при выборе материала матрицы являются состав, структура и свойства кокса [5].

Достоинствами УУКМ являются малая плотность (1,3 – 2,1 т/м3); высокие теплоемкость, сопротивление тепловому удару, эрозии и облучению; низкие коэффициенты трения и линейного расширения; высокая коррозионная стойкость; широкий диапазон электрических свойств (от проводников до полупроводников); высокие прочность и жесткость. Уникальной особенностью УУКМ является увеличение прочности в 1,5-2,0 раза и модуля упругости при повышении температуры. К их недостаткам относят склонность к окислению при нагреве до температур выше 500 ºС в окислительной среде. В инертной среде и выкууме изделия из УУКМ работают до 3000 ºС [1].

Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность.

Рисунок 2. Расположение углеродных волокон в УУКМ [6, c.65]

Прочность УУКМ на основе высокопрочных углеродных волокон выше прочности КМ на основе высокомодульных углеродных волокон, полученных при различных температурах обработки. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 ºС. При температурах выше 3000 ºС УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Свойства УУКМ изменяются на воздухе при длительном воздействии относительно невысоких температур. Так, при 400 – 650 ºС в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости [3].

К числу специальных свойств КМУУ относится низкая пористость, низкий коэффициент термического расширения, сохранение стабильной структуры и свойств, а также размеров изделий при нагревах до 2000 ºС и охлаждении, высокие механические свойства (граф.1, табл.4), а также хорошая электропроводность. Основное применение УУКМ находят в изделиях, которые работают при температурах выше 1200 ºС [5].

График 1 – Температурные зависимости удельной прочности при растяжении различных высокотемпературных материалов [5]

Таблица 4 – Сравнительные механические свойства материалов [5]

Специфика использования свойств УУКМ связана с рядом уникальных особенностей, присущих классу углеродных материалов. Присутствие волокнистого наполнителя в объеме УУКМ делает уровень их физико-механических свойств недостижимым для традиционных углеродных материалов. Варьирование пространственным расположением волокнистого наполнителя композита является эффективным инструментом в управлении анизотропией свойств УУКМ.

Общий принцип получения УУКМ состоит в создании армирующего каркаса и формировании углеродной матрицы в его объеме [7].