Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ещё ответы на вопросы.docx
Скачиваний:
83
Добавлен:
16.06.2017
Размер:
163.34 Кб
Скачать

144. Понятие о радиационном риске для здоровья человека

РАДИАЦИОННЫЙ РИСК - вероятность возникновения радиационных эффектов (заболеваний, нарушений трудоспособности, преждевременной смерти). Степень риска зависит от вида и способа излучения, дозы и мощности дозы, радиочувствительности облучённых органов. На показатели риска влияют пол, возраст в момент облучения и др. факторы. Для расчётов P.p. используют усреднённые коэффициенты пожизненного риска, отнесённые к дозе излучения. Принимают, что стохастические эффекты, приводящие к сокращению ожидаемой продолжительности полноценной жизни, проявляются у 7,3 чел. (для персонала, работающего с ионизирующим излучением - у 5) на 100 облучённых при коллективной дозе 1 Зв. Чтобы определить уровень пожизненного коллективного или индивидуального риска, эти коэффициенты умножают на эффективную дозу, коллективную или индивидуальную. По величине пожизненного риска, обусловленного воздействием излучения в течение 1 года, можно оценить уровень радиационной безопасности персонала и населения. Риском можно пренебречь, если он меньше 0.0000001.

145.Ингаляционный, пероральный и перкутальный пути поступления радионуклидов в организм человека.

Основные пути поступления радиоактивных изотопов в организм:

1) ингаляционный путь- при вдыхании загрязненного радиоактивными аэрозолями воздуха. Радиоактивные вещества задерживаются на всем протяжении дыхательного тракта от преддверия носа до глубоких, альвеолярных отделов легких.Чем меньше диаметр вдыхаемых частиц, тем относительно меньше их задерживается в верхних дыхательных путях, в бронхах и тем больше проникает в альвеолярные отделы легких, где отсутствуют механизмы, способные выводить попавшие частицы в бронхи и трахею.

а) растворимые или труднорастворимые радионуклиды, осевшие на слизистой верхних дыхательных путей, трахеи, бронховбыстро с помощью мерцательного эпителия переводятся в глотку и ротовую полость, откуда поступают в желудок

б) растворимые радионуклиды, попавшие в альвеолярный отдел легких, хорошо и быстро всасываются в кровоток, чему способствует широко развитая сеть капилляров

в) радионуклиды, образующие радиоколлоиды или труднорастворимые гидроксиды и попавшие в альвеолярный отдел легких, фагоцитируются и распределяются неравномерно в легочной ткани; после проникновения в лимфатические сосуды они медленно поступают в лимфатические узлы легкого, трахеи и средостения, затем еще медленнее - в кровеносные сосуды. Общая величина труднорастворимых радиоактивных веществ,поступающих в организм через легкие, гораздо выше, чем через кишечник, из-за большой поверхности всасывания легких.

По скорости выведения из легкихвсе радионуклиды разделяются по времени биологического полувыведения (Тб) на три класса:

1. Д (дни)- растворимые соединения радиоактивных элементов 1 группы, а также соединения элементов 1-го, 2-го и отчасти 3-го периодов Периодической системы.

2. Н (недели)

3. Г (годы)- соединения меди, серебра, золота, цинка, кадмия, иттрия, актиния, циркония и металлы платиновой группы.

2) алиментарный- через желудочно-кишечный тракт с водой и пищей. Данным путем в организм поступают хорошо растворимые радионуклиды(водород, щелочные металлы, галогены, благородные газы, все элементы второго периода, кроме берилия). Хуже всасываются щелочноземельные элементы, а также цинк, кадмий и ртуть. Плохо растворимые радионуклиды покидают кишечник в течение 1-4 дней, не успевая создать значительные дозы облучения (элементы третьей группы, частично четвертой, пятой, лантаноиды, актиноиды), они способны образовывать коллоиды и труднорастворимые гидроксиды, которые препятствуют их всасыванию в желудочно-кишечном тракте. Зато та часть радионуклидов, которая попала в организм, по типу коллоидальной адсорбции очень прочно удерживается в тканях и период биологического полувыведения из организма для таких радионуклидов составляет десятки лет.

3) через кожу- проницаемость кожи для радиоактивных веществ зависит от:

1. агрегатного состояния радионуклидов, склонности их к гидролизу и комплексообразованию- водорастворимые и жирорастворимые соединения радионуклидов всасываются через кожу быстро, скорость их проникновения сравнима со скоростью всасывания в кишечнике (наибольшая скорость проникновения у йода-131, также активно проникают в кожу изотопы молибдена, трития и элементов I и VI групп).

2. кислотности раствора, в котором находятся радиоактивные вещества

3. состояния кожного барьера и длительности контакта с ним радионуклидов- при повреждении кожи ее проницаемость для радионуклидов увеличивается. Для уменьшения контакта радионуклидов с кожей необходима своевременная дезактивация кожных покровов (например, обильная обработка кожных покровов водой и моющими средствами).

Особенность поведения в организме химических элементов - достаточно постоянное и строгое распределение их по системам, органам и тканям. Стабильные и радиоактивные изотопы одних и тех же элементов абсолютно одинаково ведут себя в организме, поэтому накапливаются они в одних и тех же органах и тканях.

146. барьерные органы при миграции радионуклидов в организме человека

При вдыхании воздуха радиоактивные вещества, содержащиеся в нем (частицы радиоактивной пыли), задерживаются на всем протяжении дыхательного тракта от преддверия носа, носоглотки, полости рта до глубоких альвеолярных отделов легких. При этом между размером частицы и глубиной ее проникновения имеется зависимость. Радиоактивные частицы    с аэродинамическим диаметром 50 мкм могут достигать только носоглотки (откуда могут потом поступать в желудок), и в основном отхаркиваются. Частицы с диаметром 7,5-10 мкм задерживаются в верхних дыхательных путях на 70-90% (не проникают в альвеолы). Более мелкие частицы  (0,05 мкм) задерживаются в альвеолярном отделе легких на 35-65%.

Чем меньший диаметр частиц, тем относительно меньше их задерживается в верхних дыхательных путях, бронхах и тем больше их проникает в альвеолярные отделы легких, т.е. в те области, где отсутствуют механизмы, которые способны выводить попавшие частицы в бронхи и трахею (т.е. наружу).

Дальнейшая судьба радионуклидов, отложившихся в дыхательных путях, также связана с размерами радиоактивных частиц, их физико-химическими свойствами и транспортабельностью в организме. Вещества, хорошо растворяющиеся, в основном быстро (за несколько десятков минут) всасываются в кровеносное русло, – этому содействует широкое развитие сети капилляров, через которые и происходит обмен газов в легких. Затем эти вещества в процессе обмена веществ откладываются в определенных органах и системах или выводятся из организма.

Вещества, слабо растворяющиеся или не растворяющиеся, оседают в верхних дыхательных путях и выделяются вместе со слизью, после чего с большой вероятностью попадают в ЖКТ, где всасываются кишечной стенкой.

Частицы, которые осели в альвеолярной части легочной ткани, или захватываются фагоцитами и удаляются, либо мигрируют в лимфатические узлы легких, трахеи, удаляясь из них в течение нескольких месяцев и даже лет. Второй по значимости путь – поступление радионуклидов с пищей и водой. Питательные вещества вместе с фоновыми концентрациями естественных радиоактивных веществ могут быть загрязнены искусственными радионуклидами, которые из внешней среды по биологическим пищевым цепочкам попадают в растения, организмы животных и, наконец, в продукты питания.

Дальнейшая судьба радиоактивных веществ зависит от их растворимости в кислой среде желудка. Многие растворимые соединения, а именно редкоземельные и трансурановые элементы, в частности, соединения плутония, при щелочной среде кишечного сока превращаются в нерастворимые соединения. Возможно и обратное, когда плохо растворимые в воде вещества в жидкой среде ЖКТ превращаются в растворимые компоненты, которые хорошо всасываются в кровь через эпителий кишечника.

В организм поступает только некоторая часть радионуклидов, попавших в кишечник, большая часть их проходит «транзитом» и удаляется из кишечника. Коэффициент всасывания (резорбции) – это доля вещества, которая поступает из ЖКТ в кровь. Он равен для трития, натрия, криптона, йода, цезия, ксенона – 1,0; стронция – 0,3; теллура – 0,25; урана, радия – 0,2; бария, полония – 0,1; церия, висмута – 0,25; плутония – 0,0005. Радиоактивные вещества, которые в ЖКТ всасываются в количестве менее 1% (коэффициент всасывания менее 0,01) очень быстро удаляются с калом (в течение 1-4 суток). Так как продолжительность контакта таких веществ с организмом небольшая и осуществляется только в период транзита, то сколько-нибудь значительные дозы излучения не успевают образоваться. Кроме этого пробег альфа- и бета-частиц в биологических тканях небольшой (для альфа-частиц – десятки микрометров, для бета-частиц – несколько миллиметров). Поэтому поглощение излучения происходит в основном в содержимом ЖКТ, значительно меньше – в слизистой оболочке толстой кишки. Гамма-кванты достигают и других внутренних органов, которые размещаются в брюшной полости и грудной клетке.

Часть радиоактивных элементов (лантоноиды, актиноиды, все элементы 3 группы, часть 4 и 5 групп ПСМ) способны образовывать коллоиды и плохо растворимые гидроокислы, которые препятствуют всасыванию элементов в ЖКТ. Некоторые из этой группы связываются с внутренними органами и очень прочно удерживаются в тканях. Скорость их выведения из внутренних органов в основном обусловлена радиоактивным распадом.

Таким образом, в случае поступления радионуклидов в организм с продуктами питания и водой, когда отдельные участки кишечника поглощают значительную часть энергии излучаемых частиц, ЖКТ становится критическим органом.

Поступление радионуклидов через кожу. До недавнего времени считали, что неповрежденная кожа является эффективным барьером для радионуклидов. Резорбция через неповрежденную кожу в 200-300 раз меньшая, чем из ЖКТ. Сейчас известен целый ряд радионуклидов, которые проникают через кожу в составе жидких или газообразных соединений (особенно через порезы, царапины, ссадины). Так, скорость проникновения паров оксида трития и газообразного йода через неповрежденную кожу сравнивается со скоростью проникновения этих веществ через дыхательные пути, а количество плутония, проникающего через кожу в виде водорастворимых соединений, не меньше, чем при поступлении через ЖКТ. При приеме радоновой ванны на протяжении 20 минут в организм проникает через кожу до 4% радона, содержащегося в воде. Хорошо проникает через кожу молибден, церий, иттрий. Стронций, цезий, теллур через кожу всасывается медленно.

Проницаемость кожи резко увеличивается при воздействии многих химически активных веществ (бензина, обезжиривающих растворителей), при повреждении рогового слоя кожи, играющего главную роль в барьерной функции кожи. Значительное влияние на интенсивность поглощения радионуклидов кожей оказывает температура и влажность воздуха.

Проникая в потовые, жировые железы, а также волосяные фолликулы, радиоактивные вещества могут оставаться там достаточно длительное время. При проникновении в собственно кожу, радиоактивные вещества либо задерживаются в ней на длительное время, либо достигают кровеносных и лимфатических сосудов и течением лимфы и крови разносятся по организму. Тем самым они создают опасность облучения самой кожи и тех внутренних органов, куда они доставляются кровотоком. Радиационные повреждения внутренних органов радионуклидами, проникшими через кожу, не отличаются по характеру от поражений при проникновении их через ЖКТ, легкие и связаны, прежде всего, с дозой облучения и с распределением в организме. Поэтому необходимо обратить внимание на дезактивацию кожи, как на средство, предупреждающее накапливание радионуклидов во внутренних органах.

 

147.Транспорт радиоагетивных веществ в желудочно-кишечном тракте

Поступление через пищеварительный тракт. Все элементы I группы периодической системы Д.И.Менделеева (водород и щелочные металлы, галогены, все благородные газы) полностью всасываются в желудочно-кишечном тракте. Это означает, что и все их радиоизотопы также хорошо всасываются в желудочно-кишечном тракте. Несколько хуже всасываются щелочноземельные элементы, а также цинк, кадмий и ртуть. Иными словами, эффективность всасывания у химических элементов и их изотопов зависит от валентности элементов, от способности к реакциям окисления и восстановления, от способности образовывать растворимые или нерастворимые в воде соединения и комплексы.

Радиоактивные вещества, которые в желудочно-кишечном тракте всасываются в количестве меньше 1%, очень быстро выводятся (в течение 1-4 сут.). Так как длительность контакта таких веществ с организмом невелика, то за период прохождения через желудочно-кишечный тракт не успевают создаться сколько-нибудь значительные дозы излучения. Кроме того, поглощение энергии излучения происходит в основном в содержимом желудочно-кишечного тракта и незначительно в слизистой оболочке кишек. Все невсосавшиеся элементы способны образовывать коллоиды и труднорастворимые гидроксиды, которые и препятствуют всасыванию. Та часть элементов и радионуклидов, которая поступает из желудочно-кишечного тракта в кровь и ткани, образует нерастворимые коллоидные гидроксиды в жидких средах организма, связывается с внутренними органами и очень прочно удерживается в тканях. Для радиоизотопов этих элементов скорость выведения их из внутренних органов в основном обусловлена радиоактивным распадом, а период полувыведения в большинстве случаев составляет около 25 лет. На величину всасывания радиоактивных веществ влияет характер пищи и скорость продвижения ее по кишечнику. Например, поступление стронция с молоком значительно увеличивает его всасывание в организме. Резорбция радионуклида в кишечнике зависит от возраста животного. У молодых животных всасывается больше радиоактивного стронция, чем у взрослых. Это связано с большим потреблением организмом минеральных солей, которые необходимы для построения скелета. На величину всасывания радионуклида также влияет количество вводимого вещества, особенно при повторных введениях.

Помимо этих факторов, влияющих на резорбцию радионуклидов, важное значение имеет исходное функциональное состояние организма, и в том числе центральной нервной системы (ЦНС). Возбуждение ЦНС способствует повышению всасывания радионуклидов в организме, торможение резко замедляет этот процесс.

148.Особенности распределения радионуклидов по органам и тканям человека:диффузный тип распределения.

Судьба радионуклидов, попавших в организм, зависит от их свойств и химической природы. Различные вещества по разному накапливаются и выводятся из организма. Одни из них в виде растворов выводятся с мочой, другие могут задерживаться в организме на различные сроки.

Поведение всосавшихся в кровь радионуклидов определяется:

· биогенной значимостью для организма стабильных изотопов данных элементов, тропностью их к определенным тканям и органам, например, кальций выполняет специфическую роль, всегда входит в состав почти всех тканей, проявляет большую тропность к костной системе, йод имеет высокую тропность к щитовидной железе;

· физико-химическими свойствами радионуклидов – положением элементов в периодической системе Д.И. Менделеева, валентностью радиоизотопа и растворимостью химического соединения, способностью образовывать коллоидные соединения в крови и тканях и другими факторами.

Существуют три основные типы распределения радионуклидов в организме: скелетный, ретикулоэндотелиальный, диффузный (равномерный). В основу положены принципы максимального или преимущественного содержания радионуклида в органе. Распределение считается скелетным, если более половины радионуклидов сконцентрировано в скелете. Распределение считается равномерным, если более половины радионуклидов, обнаруженных в организме, распределяются равномерно.

В процессе транспортировки радионуклиды задерживаются в тех тканях, в составе которых имеются стабильные элементы, аналогичные им по химическим свойствам.

Процесс перехода радионуклидов из межклеточной жидкости в органы завершается в течение непродолжительного времени. Так, плазма крови очищается от стронция и кальция за 4-10 часов (последние переходят в скелет). Полный переход йода из крови в щитовидную железу заканчивается в течение 10-15 часов. Уран выводится из крови в ткани за 12 часов.

Равномерное (диффузное) распределение характерно для щелочных элементов – лития, калия, натрия, цезия, рубидия, а также для трития, азота, углерода, полония и некоторых других элементов. Такие радионуклиды, как цезий, калий, рубидий накапливаются в основном в мышечной ткани.

Для изотопов германия, висмута, урана, кадмия, мышьяка, платины, рутения и других характерен почечный тип распределения радионуклидов. В почках откладывается до 5% от общего количества радионуклидов, поступивших в организм человека.

По печеночному типу распределяются такие радионуклиды, как лантан, церий, прометий, нитраты плутония и др. В печени накапливается до 60% этих радионуклидов.

Известны случаи высокой избирательности накопления радионуклидов. Так по тиреотропному (щитовидному) типу накапливается йод, астат, рений, теллур, технеций. Йод избирательно накапливается в щитовидной железе, концентрация его в железе в 100-200 раз больше, чем в других тканях. При облучении в больших дозах происходит дегерация, потеря функции щитовидной железы и склероз сосудов ее. В дальнейшем увеличивается частота доброкачественных и злокачественных опухолей железы.

Неоднородность распределения излучателя в тканях влияет на характер распределения, величину и мощность тканевой дозы, что особенно существенно, когда тканевые микро структуры с повышенной концентрацией излучателя имеют высокую радиочувствительность, а пробеги излучаемых частиц сравнимы с линейными параметрами (размером) этих микроструктур.

Указанные типы распределения в организме касаются только той части радионуклидов, которые поступают в кровь. Совсем другой тип распределения в организме радионуклидов наблюдается при их ингаляционном поступлении. В этом случае, как правило, содержание и концентрация радионуклидов максимальны в легких. Это обусловлено тем, что поступившие в организм радионуклиды медленно удаляются из легких, а при всасывании задерживаются в лимфатических узлах (стронций-89, цирконий-95, уран-235).

Следствием большой неоднородности накопления радионуклидов в тканях являются специфически формирующиеся патологические процессы, например, цирроз печени, очаги склероза в легких и изменения в костной ткани, в том числе образование остеосарком.

149.Ретикулоэндотелиальный тип распределения

Ретикулоэндотелиальный тип распределения характерен для радионуклидов редкоземельных элементов – лантана, церия, празеодима, прометия, а также цинка, америция, тория, плутония, калифорния и др. Все они концентрируются в селезенке, лимфатических узлах, где образуются лейкоциты (лимфоциты). В результате уменьшения количества лимфоцитов снижается иммунитет.

150. Остеотропный тип распределения

Остеотропное распределение характерно для плутония, америция, стронция, урана. Фиксация радионуклида происходит при участии нескольких механизмов. В минеральной фазе кости фиксируются аналоги кальция (стронций, уран) в виде соединений типа фосфата кальция. С органической частью кости (коллагеном) связывается плутоний. Связь с белками чрезвычайно прочная и не разрывается комплексонами. Биологические эффекты развиваются в течение нескольких лет в виде генерализованного, диффузного остеопороза, либо спустя 10 лет и более может возникнуть остеосаркома.

151. Биологические значимые радионуклиды для организма человека

Радионуклиды в человеческом организме. Характер перемещения радиоактивных веществ, попавших с воздухом, водой и пищей, в организме человека такой же, как и в животном. Разные вещества по-разному накапливаются и выводятся из органов, среди которых тоже есть своеобразные концентраторы радионуклидов.

Поскольку водород и углерод входят в состав всех органических молекул, тритий как изотоп водорода и углерод-14 равномерно распределяются во всех тканях человека. Йод тоже весьма активный биохимический элемент, который легко присоединяется к любым белкам.

Особенно жадно поглощает йод щитовидная железа, которой он нужен для синтеза гормонов. В природе йода не очень много, и в щитовидной железе не предусмотрен ограничитель на этот элемент она захватывает всл, что есть. Понятно, что иод-131, в большом количестве выделившийся в окружающую среду при аварии, оказался именно в ней. Уменьшить опасность переоблучения щитовидной железы можно, если предварительно набить ел до отказа сравнительно безвредным стабильным йодом, чтобы для радиоактивного не осталось места.

В этом заключается метод йодной профилактики, когда человеку дают принимать различные йодные препараты, например, ежесуточно несколько капель йодной настойки с водой или молоком. В отдельных районах после аварии такая профилактика проводилась и дала положительный результат. Там, где этот метод не применялся, переоблучение иодом-131 привело к тяжллым последствиям, в том числе к раку щитовидной железы. Примерно половина поступивших в организм изотопов цезия выводится за 120-170 дней. И, если бы они после чернобыльского выброса захватились за один раз, то уже можно было бы говорить об очищении человеческого организма от этих радионуклидов.

К сожалению, они продолжают поступать, и их воздействие на организм человека зависит от баланса поступления и выведения. Как и кальций, его радиоактивный близнец стронций-90 накапливается в костях и, как уже говорилось, выводится очень медленно. Таким образом, общее количество этого радионуклида в организме при постоянном поступлении с пищей с течением времени постоянно увеличивается, а его вклад в облучение становится всл более весомым.

Стронций опасен тем, что накапливается по соседству с самым радиочувствительным органом человека - красным костным мозгом. Влияние изотопов плутония изучено пока недостаточно. Однако, ввиду того, что они входят в состав горячих частиц, нужно принимать во внимание распад не одного, а множества сосредоточенных в частице ядер. Попадание всего одной горячей частицы в организм способно вывести из строя целый узел биологического механизма, нарушить его нормальное функционирование. После аварии на Чернобыльской АЭС экспериментально обнаружено, что, попадая в ллгкие, горячие частицы, прожигают и омертвляют окололежащие ткани.

Цезий-137. После стронция-90 цезий-137 является самым опасным радионуклидом для человека. Он хорошо накапливается растениями, попадает в пищевые продукты и быстро всасывается в желудочно-кишечном тракте. Цезий-137 – долгоживущий радионуклид, период его полураспада составляет 30 лет до 80% цезия откладывается в мышечной ткани. Около 10% нуклида быстро выводятся из организма, остальная часть – более медленными темпами.

152. Открытые и замкнутые ядерные циклы

В разомкнутом ЯТЦ отработанное ядерное топливо считается высокоактивными радиоактивными отходами и вместе с остаточными делящимися изотопами исключается из дальнейшего использования.

Топливный цикл на природном уране — разомкнутый. Наработанный плутоний в реакторах этого типа не используется, а регенерат урана, содержащий небольшое (2—5 кг/т) количество 235U, непригоден в качестве основного топлива. Это наиболее простой цикл, так как нет обогащения природного урана изотопом 235U, а регенерация извлекаемого топлива непосредственно не влияет на работу АЭС и может рассматриваться как самостоятельное производство. Для АЭС, работающих по этому циклу, характерны относительно небольшие первоначальные затраты на топливо. Значительная их доля может окупаться накопленным плутонием (при его извлечении), так как его содержание в отработавшем топливе может достигать 0,7 кг на 1 кг разделившегося 235U (45, 141).

На природном уране работают тяжеловодные и уран-графитовые с газовым охлаждением реакторы. В таких реакторах топливо—металлический уран с низким содержанием 235U, для них характерны низкая удельная энергонапряженность топлива и невысокая глубина его выгорания. Поэтому топливному циклу на природном уране присущи большие капиталовложения на установленный киловатт мощности и высокие производительность и стоимость предприятий внешнего топливного цикла. Однако тяжеловодные реакторы отличаются низким текущим годовым расходом урана и значительно меньшими первоначальными вложениями в топливный цикл. Отсюда следует, что при возрастании цен на природный уран, особенно при высоких темпах развития ядерной энергетики, топливный цикл на природном уране с тяжеловодными реакторами может оказаться перспективным в отношении эффективности использования ресурсов ядерного сырья.

Топливный цикл на обогащенном уране. Основная отличительная особенность этого цикла — наличие предприятий по обогащению ядерного топлива изотопом 235U. Топливный цикл на обогащенном уране может быть и замкнутым, и разомкнутым. Последний предпочтительней при низких начальных обогащениях топлива и при больших глубинах его выгорания.

Повышение начального содержания делящегося нуклида в топливе существенно улучшает нейтронно-физические характеристики реактора, благодаря чему становится возможным использовать в активной зоне такие конструкционные материалы, как нержавеющая сталь, такие замедлители и теплоносители, как обычная вода, а в качестве топлива — композиции U02, UN2 и т. п. Все это позволяет повысить удельную энергонапряженность и температуру в активной зоне реактора, увеличить глубину выгорания топлива, уменьшить при этом размеры реакторов и количество топлива, проходящего через предприятия внешнего топливного цикла. В результате снижаются капиталовложения в АЭС и заводы по изготовлению твэлов и химической переработке, появляется возможность повысить термодинамический КПД АЭС и снизить себестоимость вырабатываемой электроэнергии (141).

В то же время, при повышении начального обогащения, что связано с увеличением затрат в обогатительном производстве, возрастает стоимость ядерного топлива. По эффективности использования ядерного топлива цикл с обогащением топлива уступает циклу на природном уране. Однако снижение удельных капитальных затрат при строительстве АЭС, более широкие возможности улучшения технико-экономических характеристик реакторных установок, возможность повышения их мощности привели к тому, что в настоящее время эксплуатируются, строятся и проектируются в основном реакторные установки, работающие на обогащенном уране (водо-водяные под давлением, канальные уран-графитовые, водо-водяные кипящие и др.).

Замкнутый ядерный топливный цикл - ядерный топливный цикл, в котором отработавшее ядерное топливо, выгруженное из реактора, перерабатывается для извлечения урана и плутония для повторного изготовления ядерного топлива.

Этапы замкнутого ЯТЦ включают выдержку отработанного ядерного топлива на территории АЭС в течение 3–10 лет; временное контролируемое хранение ОЯТ в автономных хранилищах при радиохимическом заводе (сроком до 40 лет), переработку ОЯТ с выделением из него отдельных (или суммы) делящихся нуклидов и продуктов деления, представляющих коммерческий интерес, отверждение и захоронение отходов.

Переработка отработанного ядерного топлива даёт определённые экономические выгоды, восстанавливая неиспользованный уран и вовлекая в энергетику наработанный плутоний. При этом уменьшается объем высокорадиоактивных и опасных отходов, которые необходимо надлежащим образом хранить, что также имеет определенную экономическую целесообразность. В отработанном ядерном топливе содержится примерно 1% плутония. Это очень хорошее ядерное топливо, которое не нуждается ни в каком процессе обогащения, оно может быть смешано с обедненным ураном и поставляться в виде свежих топливных сборок для загрузки в реакторы. Его можно использовать для загрузки и в реакторы-размножители (коверторы и бридеры).

К преимуществам замкнутого ЯТЦ относят возврат в энергетику дорогостоящих делящихся материалов — урана и плутония, что обеспечит атомную энергетику топливом на тысячелетие при любом росте потребностей. Кроме того, объёмы высокорадиоактивных отходов, предназначенных для вечного захоронения, гораздо меньше после переработки ОЯТ, чем объёмы отработавших тепловыделяющих сборок без их переработки.

Основные недостатки замкнутого ЯТЦ – наличие экологически опасного радиохимического производства и возможность неконтролируемого распространения плутония- 239 и других делящихся компонентов ядерного оружия.

Схема открытого варианта ЯТЦ значительно короче и проще, чем это имеет место в замкнутом варианте. Отсутствует основной источник загрязнения окружающей среды радионуклидами - радиохимический завод, т. е. отсутствует наиболее радиационно опасное производство. Радиоактивные вещества постоянно находятся в твёрдом состоянии в герметичной упаковке, не происходит их «размазывание» по огромным площадям в виде растворов, газов при «штатных» и нештатных выбросах и т.д. Исчезают все проблемы, связанные со строительством и будущим выводом из эксплуатации радиохимического завода: финансовые и материальные затраты на строительство и эксплуатацию завода, в том числе на зарплату, электро-, тепло-, водоснабжение, на огромное количество защитного оборудования и техники, химических реагентов, агрессивных, ядовитых, горючих и взрывоопасных веществ (кислот, щелочей, органических жидкостей) и т.д. Исчезает необходимость закачивания под землю трития, устраняются проблемы с утилизацией йода, жидких и газообразных отходов, выбросов и т.д. и т.п. И, наконец, «вечное» захоронение ОТВС не означает полное и вечное исключение из оборота ядерных материалов. Ибо «могильник» для отработанного топлива — это искусственное компактное месторождение урана и плутония, к «разработке» которого всегда можно вернуться в случае крайней необходимости — когда появятся новые принципы подхода к использованию ядерных материалов, новые технологии по переработке ОЯТ, снизится активность осколочных радионуклидов и т.д (141).

К недостаткам открытого цикла следует отнести большую стоимость долговременных хранилищ и полигонов для захоронения, трудности обеспечения долговременной изоляции ТВС от биосферы (существует реальная опасность освобождения радионуклидов в случае разрушения твэлов при их длительном хранении), необходимость постоянной вооруженной охраны захоронений (возможность хищения делящихся нуклидов из захоронений террористами также представляется реальной), а также постоянного контроля за состоянием хранимых материалов.

Очевидно, что любой ядерный топливный цикл – дорогостоящее и опасное производство. Выбор оптимального варианта ЯТЦ – серьезная проблема для страны и мира в целом. Анализу экономических аспектов различных вариантов ЯТЦ уделяют большое внимание во всех заинтересованных странах. На данном этапе с экономической точки зрения оба варианта обращения с ОЯТ — переработка с последующим вечным хранением радиоактивных отходов или вечное хранение ОЯТ без переработки — примерно равноценны. Поэтому при выборе варианта ЯТЦ на первый план выходят вопросы экологической, энергетической, социальной, медицинской целесообразности осуществления замкнутого или открытого ЯТЦ.

Какому топливному циклу будет отдано предпочтение в конкретной стране, зависит от критериев, которые будут использоваться при оценке вариантов решения проблемы локализации уже накопленных и будущих отходов (включая ОЯТ). Этих критериев пять: степень риска для здоровья людей и окружающей среды; стоимость переработки ОЯТ, строительства хранилищ; соответствие законодательству страны по ввозу ОЯТ из-за рубежа; соответствие целям нераспространения ядерного оружия и ядерных материалов; информированность населения (139).

Разные страны придерживаются разных национальных программ, предусматривающих либо переработку ОЯТ, либо захоронение, либо «отложенное решение», то есть длительное хранение отработанных твэлов.

Из 34 стран в настоящее время лишь 5 государств (Индия, Япония, Англия, Россия, Франция) перерабатывают отработанное ядерное топливо на своих предприятиях. Большинство стран, включая Канаду, Финляндию, ФРГ, Италию, Нидерланды, Швецию, Швейцарию, Испанию, США и КНР, либо хранят ОЯТ, либо передают ОЯТ на переработку другим странам (139).

В России на радиохимическом заводе РТ-1 (комбинат «Маяк») перерабатываются следующие виды отработанного ядерного топлива:

- ТВС, отработавшие свой ресурс в энергетических реакторах типа ВВЭР-440, БН-350, БН-600 или в транспортных ядерных установках;

- ТВЭЛы промышленных реакторов, содержащие уран, обогащенный на 90% изотопом 235U;

- ядерное топливо промышленных реакторов в виде ТВЭЛов (блоков) на основе металлического урана природного обогащения, предназначенное для наработки плутония.

ОЯТ реакторов ВВЭР-1000 и РБМК любого типа (т.е. основных реакторов энергетики России) не перерабатываются (технические это возможно, но экономически не целесообразно) и хранятся на территории завода РТ-1, а также в новом хранилище на строящемся заводе РТ-2 (Железногорск). целом для российской ядерной энергетики характерно наличие открытого ЯТЦ.

Единственный в России завод по переработке отработанного ядерного топлива РТ-1 действует на территории комплекса, ранее производившего оружейный плутоний (Челябинск-65, Озёрск). Завод РТ-1 перерабатывает в год 200 т ТВС (проектная мощностью 400 т тяжелого металла в год). Он является компонентом замкнутого ЯТЦ.

ТВЭЛы промышленных реакторов (наработка оружейного плутония) перерабатываются на радиохимических производствах трех предприятий: — ГХК (горно-химический завод, Красноярск); - ПО «Маяк» (радиохимический завод, Челябинск) (табл.3).

Таблица 3.

Предприятия перерабатывающие отработанное ядерное топливо (142).

Предприятие

Местонахождение

Год

Основные производства

Сибирский химический комбинат

Томск-7

1951

промышленные реакторы радиохимический завод химико-металлургический завод сублиматный завод разделение изотопов

ПО "Маяк"

Челябинск-65

1948

промышленные реакторы радиохимический завод химико-металлургический завод производство радиоизотопов

Горно-химический комбинат

Красноярск-26

1958

промышленные реакторы радиохимический завод

На этих же предприятиях осуществляется долговременного хранение радиоактивных продуктов производства.

Сейчас проводятся предварительные исследования по переводу реакторов АЭС на уран-плутониевое топливо. Продолжается разработка реактора-наработчика топлива на быстрых нейтронах на базе реактора типа БН (быстрый натриевый) в целях замыкания ядерного топливного цикла (включая эффективное сжигание оружейного плутония). Только после успешного завершения подготовительного периода Россия сможет полностью перейти на замкнутый ЯТЦ.

По существующим планам в России до 2020 ядерная энергетика будет развиваться в основном в разомкнутом (открытом) топливном цикле, поскольку, учитывая значительные запасы уранового сырья, нецелесообразно с экономической точки зрения расширять переработку отработанного топлива. Сейчас идет подготовка технической и производственной базы для перехода к замкнутому ядерному топливному циклу (под Красноярском строится завод РТ-2 по переработке ОЯТ, приспосабливаются медленные реакторы АЭС к МОКС-топливу, расширяется использование быстрых реакторов в атомной энергетике и др.). Постепенный переход на закрытый вариант ЯТЦ диктуется не только внутренней потребностью России, но и необходимостью переработки ОЯТ зарубежных АЭС (142).

Наиболее последовательно замкнутый ЯТЦ осуществляет Франция. Согласно французской точке зрения, переработка ОЯТ в сочетании с возвратом в топливный цикл плутония и вводом реакторов на быстрых нейтронах помогут обеспечить в долгосрочной перспективе сохранение запасов природного урана. Ядерная энергетика Франции ежегодно нарабатывает около 1100 тонн ОЯТ. Большая его часть перерабатывается.

Регенерированный уран и плутоний используется в энергетических реакторах.

Поскольку в результате радиохимической переработки отработанного ядерного топлива образуется большой объем РАО, то большинство стран ориентируются на долговременное (до 50 лет) хранение ОЯТ, что дает возможность подготовиться к окончательному захоронению, но не исключает возможности его химической переработки в дальнейшем.

Ядерная энергетика Швеции ежегодно нарабатывает около 250 тонн ОЯТ и ориентирована исключительно на открытый цикл – отработанные твэлы накапливаются в бетонном бассейне на глубине 30 м в центральном хранилище для всех АЭС. В Швеции проводится обширный комплекс работ по подготовке к геологическому захоронению всего ОЯТ и других видов радиоактивных отходов АЭС.

В Германии реализуется вариант замкнутого ЯТЦ, причём ОЯТ немецких АЭС перерабатывается на мощностях COGEMA (Франция) и BNFL (Великобритания) в соотношении примерно 50% на 50%. Выделенный при переработке плутоний в виде уран-плутониевого МОКС-топлива загружается в немецкие энергетические реакторы.

Франция, Германия, Великобритания, Россия и Япония продолжают развитие технологий закрытого топливного цикла для оксидных топлив. Сейчас Европе 35 реакторов способны частично использовать МОКС-топливо (от 20 до 50 %), содержащего до 7 % пригодного для реакторов плутония. В настоящее время лишь Великобритания, Франция и Россия перерабатывают ОЯТ других государств (141).

Основные этапы ядерного топливного цикла:

  1. добыча урановой руды,

  2. изготовление уранового концентрата (в форме октооксида урана (III) U3O8 или диураната натрия Na2U207);

  3. конверсию (производство гексафторида урана UF6 и его обогащение ураном-235);

  4. изготовление топлива для ядерных реакторов;

  5. его сжигание в реакторах с целью производства тепловой и электроэнергии;

  6. переработку отработанного ядерного топлива (ОЯТ) и обращение с радиоактивными отходами (112).

153Факторы поступления радионуклидов в организм человека

на величину всасывания радиоактивных веществ влияет характер пищи и скорость продвижения ее по кишечнику. Например, поступление стронция с молоком значительно увеличивает его всасывание в организме. Резорбция радионуклида в кишечнике зависит от возраста животного. У молодых животных всасывается больше радиоактивного стронция, чем у взрослых. Это связано с большим потреблением организмом минеральных солей, которые необходимы для построения скелета. На величину всасывания радионуклида также влияет количество вводимого вещества, особенно при повторных введениях.

Помимо этих факторов, влияющих на резорбцию радионуклидов, важное значение имеет исходное функциональное состояние организма, и в том числе центральной нервной системы (ЦНС). Возбуждение ЦНС способствует повышению всасывания радионуклидов в организме, торможение резко замедляет этот процесс.

Обмен радиоактивных элементов при поступлении их в легкие с вдыхаемым воздухом определяют три параметра: размер вдыхаемых частиц, с которыми связаны радиоактивные вещества; склонность радионуклидов к расщеплению и комплексообразованию, от которой зависит путь и скорость выведения из легких; период полураспада радионуклида.

На всасывание радионуклидов через кожу существенно влияет внешняя температура. При повышении температуры происходит расширение кровеносных сосудов кожи, раскрытие сальных желез, что способствует всасыванию радионуклидов. При поступлении радиоактивных веществ, находящихся в воздухе, при всасывании через кожу важное значение имеет давление пара и отложение вещества на поверхности кожи. Жирорастворимые соединения могут быстро и в больших количествах всасываться через кожу, и скорость их проникновения близка к скорости всасывания через пищеварительный тракт. Для количественной оценки поступления радионуклидов через кожу применяют коэффициент всасывания. Это количество активности, обнаруженное в организме за определенное время наблюдения, по отношению к исходному, нанесенному на кожу. Процесс всасывания характеризует также скорость поступления радионуклида через кожу, которая выражается количеством радиоактивного вещества, поступившего через определенный участок поверхности кожи за единицу времени.

Поступление радионуклидов зависит от химического состава соединений. Проницаемость кожи человека и различных видов животных к одному и тому же нуклиду не одинакова. При поступлении радиоактивных веществ через кожу происходит облучение как самой кожи, так и внутренних органов.

На процессы всасывания радиоактивных веществ из поврежденных раневых поверхностей кожи влияют физико-химические свойства радиоактивного вещества. Подвергающиеся комплексообразованию или растворимые соединения сравнительно быстро поступают в кровь, а коллоидобразующие элементы, некоторые металлы задерживаются на месте введения очень долго.

Процессы всасывания радиоактивных веществ через кожные покровы происходят не мгновенно, а растянуты во времени.

154. Метаболизм радионуклидов ядерного топливного цикла в организме человека

Поступление радионуклидов с кормом — основной источник радионуклидов для сельскохозяйственных животных, тогда как другие пути перехода радиоактивных веществ играют, как правило, незначительную роль. Попавшие в организм животных радионуклиды вступают в процессы метаболизма, включающие всасывание, передвижение по отдельным органам и тканям, депонирование и выведение. От интенсивности этих процессов зависит, в конечном счете, накопление радионуклидов в продукции животноводства.

Скорость и место всасывания радионуклидов в ЖКТ можно определить путем учета времени, в течение которого после приема содержащих радиоактивные вещества кормов или воды в крови наблюдается максимальная концентрация радионуклидов. Это время варьируется в широких пределах. Так, у жвачных F-18, Na-22, Mo-99 и I-131, для которых отмечается максимальная концентрация в крови в течение 2-8 ч после потребления корма, всасываются в основном в верхней части ЖКТ (по-видимому, в рубце). У H-3, Ca-45, Sr-90, Te-132, Cs-137 и W-185 пики концентрации в крови регистрируются в более отдаленные сроки — спустя 12-60 ч после орального поступления, эти радионуклиды всасываются главным образом в средней части ЖКТ — в тонком кишечнике.

У свиней основным методом поступления из ЖКТ в кровь I-131 является желудок, а у крупного рогатого скота, овец и коз — рубец, книжка и тонкий кишечник. При этом у жвачных животных скорость резорбции радионуклидов из ЖКТ в кровь медленнее, чем у животных с однокамерным желудком.

Интенсивность и величина всасывания радионуклидов зависят от химической формы соединения, в которое включен радионуклид, и его физико-химических свойств. В ЖКТ радионуклиды могут поступать в различных формах: в ионизированном состоянии, адсорбированных на поверхности растений аэрозолей, включенными в состав растительных и животных кормов, в составе оплавленных силикатных частиц разной растворимости.

Усвоение радионуклидов у различных сельскохозяйственных животных может варьироваться в широких пределах. Действительно, если всасывание I-131 в ЖКТ взрослых жвачных составляет 100%, то у свиней оно в 1,3-3,0 раза меньше. Напротив, Cs-137 всасывается из ЖКТ свиней на 100%, а из ЖКТ представителей жвачных — крупного рогатого скота, овец и коз соответственно в 1,3-2,0, 1,8 и 1,5 раза меньше. У кур всасывание Fe-59 и Co-60 выше, чем у крупного рогатого скота в 18 и 15 раз, а у свиней соответственно в 4 и 12 раз меньше, чем у кур.

Всасывание радионуклидов зависит от возраста животных, и у очень молодых особей оно может приближаться для некоторых радионуклидов к 100%.

Радионуклиды, всосавшиеся в ЖКТ, поступают в кровь, распределяются в компонентах ее сыворотки и форменных элементов. Распределение радионуклидов в органах и тканях сельскохозяйственных животных определяется их видом, возрастом, длительностью поступления радиоактивных веществ в организм и другими факторами.

В сыворотке крови овец Na-22, K-42 и Cs-137 практически не связаны с ее белками и находятся в диализированном состоянии, Ca-45 и Sr-90 лишь частично концентрируются в белках сыворотки (29-41%), а Y-90 и Ce-144 содержатся преимущественно (99%) в белковосвязанной форме.

Радионуклиды, транспортированные кровью к органам и тканям, частично задерживаются и избирательно концентрируются в них. Концентрация в органах и тканях радионуклидов при увеличении сроков их поступления в организм возрастает. Но через определенный период времени устанавливается равновесие между поступившими в организм количествами радионуклидов и их выделением. Равновесное состояние Sr-90 в мягких тканях сельскохозяйственных животных устанавливается на 5-7-е сутки (КРС, овцы, козы) и на 30-90-е сутки (свиньи, куры); для Cs-137 оно наступает позднее: у овец через 105 суток, а у КРС через 150 суток после начала введения.

Наибольшая концентрация в щитовидной железе сельскохозяйственных животных I-131 при длительном поступлении в организм наблюдается на 10-15-е сутки и у КРС составляет 150% суточного поступления с кормом (в расчете на массу всего органа). Коэффициент накопления I-131 в щитовидной железе по сравнению с другими органами примерно в 100 раз больше

155.Характеристика и классификация микроволнового излучения

Микрово́лновое излучениесверхвысокочасто́тное излуче́ние (СВЧ-излучение) — электромагнитное излучение, включающее в себя дециметровыйсантиметровый и миллиметровый диапазоны радиоволн (длина волны от 1 м — частота 300 МГц до 1 мм — 300 ГГц). Однако границы между инфракраснымтерагерцовым, микроволновым излучениями и ультравысокочастотными радиоволнами приблизительны и могут определяться по-разному.

Микроволновое излучение большой интенсивности используется для бесконтактного нагрева тел (как в бытовых, так и в промышленных микроволновых печах для термообработки металлов, в хирургии Радиочастотная абляция вен[1]), основным элементом в которых служит магнетрон, а также для радиолокации.

Микроволновое излучение малой интенсивности используется в средствах связи, преимущественно портативных — рациях, сотовых телефонах (кроме первых поколений), устройствах BluetoothWi-Fi и WiMAX.

Поддиапазоны

Поддиапазоны СВЧ в различных системах обозначений различаются; используемые в спутниковой связи приведены в таблице.

Диапазоны частот

Название

Частотный диапазон, ГГц

Название диапазона

Диапазон частот РЛС

Диапазон частот в спутниковой связи

L

1,0 — 2,0

S

2,0 — 4,0

C

4,0 — 8,0

4,0 — 7,0

X

8,0 — 12,0

7,0 — 10,7

Ku

12,0 — 18,0

10,7 — 18,0

K

18,0 — 26,5

18,3 — 20,2; 27,5 — 31,5

Ka

26,5 — 40,0

156.Механизм действия ионизирующего излучения

Механизм действия ионизирующего излучения

Принципиальной особенностью действия ионизирующего излучения является его способность проникать в биологические ткани, клетки, субклеточные структуры и, вызывая одномоментную ионизацию атомов, за счёт химических реакций повреждать их. Ионизирована может быть любая молекула, а отсюда все структурно-функциональные разрушения в соматических клетках, генетические мутации, воздействия на зародыш, болезнь и смерть человека.

Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.

Организм человека на 75% состоит из воды, следовательно, решающее значение в этом случае будет иметь косвенное воздействие радиации через ионизацию молекулы воды и последующие реакции со свободными радикалами. При ионизации молекулы воды образуется положительный ион Н О и электрон, который, потеряв энергию, может образовать отрицательный ион Н О. Оба эти иона являются неустойчивыми и распадаются на пару стабильных ионов, которые рекомбинируют (восстанавливаются) с образованием молекулы воды и двух свободных радикалов ОН и Н, отличающихся исключительно высокой химической активностью. Непосредственно или через цепь вторичных превращений, таких как образование перекисного радикала (гидратного оксида воды), а затем перекиси водорода Н О и других активных окислителей группы ОН и Н, взаимодействуя с молекулами белков, они ведут к разрушению ткани в основном за счет энергично протекающих процессов окисления. При этом одна активная молекула с большой энергией вовлекает в реакцию тысячи молекул живого вещества. В организме окислительные реакции начинают превалировать над восстановительными. Наступает расплата за аэробный способ биоэнергетики – насыщение организма свободным кислородом.

Воздействие ионизирующего излучения на человека не ограничивается изменением структуры молекул воды. Меняется структура атомов, из которых состоит наш организм. В результате происходит разрушение ядра, клеточных органелл и разрыв наружной мембраны. Так как основная функция растущих клеток – способность к делению, то утрата её приводит к гибели. Для зрелых неделящихся клеток разрушение вызывает потерю тех или иных специализированных функций (выработку определённых продуктов, распознавание чужеродных клеток, транспортные функции и тд.). Наступает радиационно индуцированная гибель клеток, которая в отличие от физиологической гибели необратима, так как реализация генетической программы терминальной дифференцировки в этом случае осуществляется на фоне множественных изменений нормального течения биохимических процессов после облучения.

Кроме того, дополнительное поступление энергии ионизации в организм нарушает сбалансированность энергетических процессов, происходящих в нём. Ведь наличие энергии в органических веществах зависит в первую очередь не от их элементарного состава, а от строения, расположения и характера связей атомов, т.е. тех элементов, которые легче всего поддаются энергетическому воздействию.

157. Дозиметрия микроволнового излучения радиочастотного диапазона

158. Нормирование микроволнового излучения

НОРМИРОВАНИЕ РЧ И СВЧ ИЗЛУЧЕНИЙ

Нормирование является основным элементом электромагнитной производственной и экологической безопасности человека.

За последние годы в городах количество разнообразных источников ЭМИ во всем частотном диапазоне (вплоть до десятков гигагерц) резко увеличивается. Это системы сотовой связи, неисчислимое количество систем мобильной радиосвязи, радары ГАИ, несколько новых телеканалов и десятки радиовещательных станций.

Нормирование РЧ и СВЧ подразумевает дифференцированный подход для лиц, непосредственно работающих с радиоизлучающими источниками, и населения.

Основным руководящим документом, определяющим параметры воздействия ЭМИ РЧ и СВЧ, являются «Санитарные правила и нормы .» (СанПиН 2.2.42.1.8.055-96).

Согласно им, для лиц, работа или обучение которых связаны с необходимостью пребывания в зонах воздействия ЭМИ РЧ и СВЧ, нормирование осуществляют как по интенсивности воздействия, так и по энергетической экспозиции.

Для персонала, работающего с источниками ЭМИ РЧ и СВЧ, в течение рабочего дня ПДУ энергетической экспозиции не должны превышать значений, указанных в табл. 6.1.

Табл. 6.1. Предельно допустимые значения энергетической экспозиции для персонала

Диапазоны частот

Предельно допустимая энергетическая экспозиция

по электрической составляющей, 

по магнитной составляющей, 

по плотности потока энергии, 

30 кГц -3 МГц

20 000

200

3-30 МГц

7 000

Не разработаны

30- 50 МГц

800

0,72

50 – 300 МГц

800

Не разработаны

300 МГц -300 ГГц

Не разработаны

200

Предельно допустимые уровни интенсивности ЭМИ РЧ и СВЧ и допустимое время воздействия, определяемое по плотности потока энергии (ППЭПДУ), вычисляются следующей формулой:

.

Предельно допустимые уровни напряженности ЭМИ РЧ и СВЧ в зависимости от продолжительности воздействия представлены в табл. 6.2.

Табл. 6.2. Предельно допустимые уровни ЭМИ РЧ и СВЧ в зависимости от продолжительности воздействия

159. Характеристика СВЧ излучения и его применение в медицине

СВЧ-излучение – это электромагнитное излучение, которое состоит из следующих диапазонов: дециметрового, сантиметрового и миллиметрового. Длина его волны колеблется от 1 м (частота в этом случае составляет 300 МГц) до 1 мм (частота равна 300 ГГц). Широкое практическое применение СВЧ-излучение получило при реализации способа бесконтактного нагрева тел и предметов. В научном мире данное открытие интенсивно используется в исследовании космического пространства. Привычное и наиболее известное его применение – в домашних микроволновых печах. В тяжелой промышленности оно используется для термообработки металлов. Как форма носа характеризует личность человека? Почему надо заниматься сексом как можно чаще? Очаровательная фотосессия мамы пятерняшек Также на сегодняшний день СВЧ-излучение получило распространение в радиолокации. Антенны, приемники и передатчики на самом деле – дорогостоящие объекты, но они успешно окупаются из-за огромной информационной емкости СВЧ-каналов связи. Популярность его использования в быту и в производстве объясняется тем фактом, что данный тип излучения является всепроникающим, следовательно, нагрев объекта идет изнутри. Шкала электромагнитных частот, вернее, ее начало и конец, представляет собой две различные формы излучения: ионизирующее (частота волны больше, чем частота видимого света); неионизирующее (частота излучения меньше частоты видимого света). Для человека представляет опасность сверхвысокочастотное неионизированное излучение, которое влияет напрямую на человеческие биотоки с частотой от 1 до 35 Гц. Как правило, неионизированное СВЧ-излучение провоцирует беспричинную усталость, аритмию сердца, тошноту, снижение общего тонуса организма и сильную головную боль. Такие симптомы должны быть сигналом, что близко находится вредный источник излучения, который может нанести существенный ущерб здоровью. Тем не менее, как только человек покидает опасную зону, недомогание прекращается, и эти неприятные признаки исчезают сами по себе. Вынужденное излучение открыл еще в 1916 году гениальный ученый А. Эйнштейн. Это явление он описал как влияние внешнего электромагнитного поля, возникающего при переходе электрона в атоме с верхнего энергетического уровня на более низкий. Излучение, которое при этом возникает, назвали индуцированным. У него есть еще одно название – вынужденное излучение. Особенность его состоит в том, что атом излучает электромагнитную волну – поляризация, частота, фаза, а также направление распространения у нее такие же, как у первоначальной волны. Индуцированное излучение ученые применили как основу в работе современных лазеров, которые, в свою очередь, помогли в создании принципиально новых современных устройств – например, квантовых гигрометров, усилителей яркости и т. д. Благодаря лазеру появились новые технические направления – такие, как лазерные технологии, голография, нелинейная и интегральная оптики, лазерная химия. Его используют в медицине при сложнейших операциях на глазах, в хирургии. Монохроматичность и когерентность лазера делают его незаменимым в спектроскопии, разделении изотопов, системах измерения угловых скоростей и в светолокации. Микроволновое излучение – это тоже радиоизлучение, только оно относится к инфракрасному диапазону, а также у него наибольшая частота в радиодиапазоне. С этим излучением мы сталкиваемся по нескольку раз в день, используя микроволновую печь для подогрева еды, а также разговаривая по мобильному телефону. Очень интересное и важное применение ему нашли астрономы. Микроволновое излучение используют для изучения космического фона или реликтового излучения времен Большого взрыва, который произошел миллиарды лет тому назад. Астрофизики изучают неоднородности свечения в некоторых участках неба, что помогает узнать, как во Вселенной формировались галактики. 160.Действие электрических полей на организм человека и животных