Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОЧВОВЕДЕНИЕ (2).docx
Скачиваний:
102
Добавлен:
10.08.2017
Размер:
145.3 Кб
Скачать

38. Водные свойства почвы

Водными (водно-физическими, гидрофизическими) свойствами называют совокупность свойств почвы, которые определяют поведение почвенной воды в ее толще.

Основными водными свойствами почвы являются

1) влагоемкость,

2) водопроницаемость,

3) водоподъемная способность.

1) Влагоемкость   – способность почвы поглощать и удерживать определенное количество воды. В зависимости от сил, удерживающих воду, влагоемкость дифференцируют на полную влагоёмкость, максимальную адсорбционную, максимальную молекулярную, капиллярную, наименьшую (или полевую).

Полная влагоёмкость соответствует состоянию полной насыщенности почвы водой, когда ею заполнены все поры. Её величина зависит от пористости почвы и рассчитывается по формуле:

W = P/d,

где W – полная влагоемкость (в % от сухой почвы); Р – пористость (в % от объема почвы); d – плотность почвы (г/см3).

Полная влагоёмкость почв обычно колеблется в пределах 40–50%.

Максимальная адсорбционная влагоемкость – наибольшее количество прочносвязанной (адсорбированной) воды, содержащейся в почве.

Максимальная молекулярная влагоемкость – это верхний предел содержания рыхлосвязанной (пленочной) воды, которая удерживается силами молекулярного притяжения на поверхности почвы.

Капиллярная влагоёмкость – наибольшее количество капиллярно-подпертой воды, которое может удерживаться в слое почвы, находящемся в пределах капиллярной каймы.

Наименьшая влагоёмкость (или полевая) – это наибольшее количество капиллярно-подвешенной влаги, которое может удержать почва после стекания избыточной влаги при глубоком залегании грунтовых вод. С этой влагоёмкостью связано представление о дефиците влаги в почве, и по величине наименьшей влагоёмкости рассчитывают поливные нормы.

Величина всех видов влагоемкости зависит от механического состава, структуры почвы, ее гумифицированности, и возрастает с переходом от легких почв к тяжелым, от бесструктурных к структурным, от почв с низким содержанием гумуса к почвам хорошо гумусированным.

2) Водопроницаемость – способность почв впитывать и пропускать сквозь себя воду, поступающую с поверхности. Водопроницаемость может определяться временем, за которое вода проходит определенное расстояние по порам почвы сверху вниз. При поступлении воды в почву сначала происходит поглощение и прохождение ее от одного слоя к другому, ненасыщенного водой. Потом, когда почвенные поры полностью наполнятся водой, начинается ее фильтрациясквозь толщу почвы. Считается, что почва имеет хорошую водопроницаемость, если она пропускает за один час при напоре воды в 5 см и температуре 10 °С от 70 до 100 мм воды. Чрезмерно высокая водопроницаемость (от 500 мм до 1000 мм) обусловливает высокую фильтрацию воды за границы заселенного корнями слоя. И наоборот, чрезмерно низкая водопроницаемость (менее 30 мм) может привести к застаиванию воды на поверхности почвы, стоку ее по склону, смыву и размыву почвы. Песчаные и супесчаные почвы более проницаемы для воды, чем суглинистые и глинистые. Водопроницаемость структурных почв более высокая по сравнению с бесструктурными. Водопроницаемость почвы тем выше, чем выше некапиллярная скважность.

Водопроницаемость лесных почв (исключая пески) выше, чем полевых. В лесных почвах этому способствует хорошая оструктуренность, лесная подстилка, более рыхлое сложение, ходы корней и роющих животных. Благодаря повышенной водопроницаемости увеличивается влагооборот лесных почв, поверхностный сток влаги переводится во внутренний.

После рубки леса водопроницаемость снижается, из-за уплотнения и задернения почвы.

3) Водоподъемная способность – способность почвы вызывать восходящее перемещение воды посредством капиллярных сил. Они наиболее сильно проявляются в порах диаметром 0,1– 0,003 мм; более мелкие поры заполнены связанной водой. Поэтому водоподъемная способность возрастает от песчаных почв к суглинистым и снижается в глинистых. Водоподъемная способность определяется временем, за которое вода проходит определенное расстояние снизу вверх (это способность выпаривания воды) или высотой поднятия воды. Максимальная высота поднятия воды над уровнем грунтовых вод для песчаных почв составляет 0,5–0,8 м, для средних суглинистых почв – 2,5 – 3 м, для глины тяжелой –  до 6 м. В структурных почвах капиллярная вода менее подвижна.

39. Главный источник почвенной влаги — атмосферные осадки; иногда значительную роль играют также близко расположенные грунтовые воды; в районах орошаемого земледелия большое значение имеют поливы. Воды атмосферных осадков и талые воды могут частично стекать, образуя поверхностный сток, а часть воды поступает в почву и расходуется растениями. Атмосферные осадки, талые и поливные воды проникают в почву вследствие её водопроницаемости (способности почвы пропускать воду). Чем больше в почве крупных (некапиллярных) промежутков, тем выше водопроницаемость. Особое значение имеет водопроницаемость для впитывания талых вод. Если осенью почва замёрзла в сильно увлажнённом состоянии, то обычно её водопроницаемость крайне незначительна. Под лесной растительностью, предохраняющей почву от сильного промерзания, или на полях с рано проведённым снегозадержанием талая вода впитывается хорошо. Поступление в почву влаги из грунтовых вод зависит от глубины их залегания и водоподъёмной способности почв и грунта. Грунтовые воды в глинистых почвах по капиллярам поднимаются на большую высоту (до 4 м), но очень медленно; в почвах лёгкого гранулометрического состава — быстрее, но на меньшую высоту.

Важной характеристикой водного режима почв является водный баланс, отражающий изменение запасов влаги в почвенном профиле за определенный промежуток времени на основе изучения всех видов поступления и расходования жидкой влаги для заданного слоя почвы.

Водный баланс измеряется в мм, м3/с или л/(с • м2). Для характеристики соотношения расхода и прихода влаги используется общее уравнение водного баланса:

WT=W0 + пB — Рв,

где WT — запас влаги в почвенной толще на конец изучаемого периода; W0 — начальный запас влаги на период расчета водного баланса; Пв — поступление влаги в почвенную толщу; Рв — расход почвенной влаги.

Поступление влаги в почвенную толщу (Пв) вычисляется по уравнению:

пв = Оос + К + Вп + Ввп + вга, где Оос — сумма осадков на расчетный период; К — конденсация влаги; Вп — поверхностный приток; Ввп — внутрипочвенный приток; Вга — поступление влаги в почву из грунтовых вод (капиллярный подъем влаги).

Расход почвенной влаги (Рв) вычисляется по уравнению:

Рв = Ис + Д + Сп + Свп + Срр,

где Ис — физическое испарение; Д — десукция растениями; Сп — поверхностный сток; Свп — внутрипочвенный сток; — грунтовый сток.

Водный баланс обычно составляется для декады, месяца, вегетационного периода, года. Изучение элементов водного баланса дает представление о закономерностях формирования водного режима почв.

Регулирование водного режима почв

Комплекс мероприятий разрабатывают с учетом конкретных почвенно-климатических условий.

Болотные почвы требуют осушительных мероприятий путем устройства открытого или закрытого дренажа.

Водный режим почв с временным избыточным увлажнением регулируют агротехническими мероприятиями – это гребневание, бороздование, выравнивание поверхности почвы, нивелировка микро- и мезопонижений, в которых застаивается вода, создание глубокого пахотного слоя, рыхление подпахотного горизонта т. д.

В условиях недостаточного увлажнения применяют различные мероприятия, направленные на накопление, сохранение и рациональное использование влаги в почве – это задержание снега и талых вод; лесные полосы, кулисные растения, стерня, рыхление весной и т. д.

Основной способ улучшения водного режима в засушливых зонах – это орошение, подбор культур т. д.

40. Водный режим- это совокупность явлений поступления. передвижения, изменения физического состояния и расхода воды в почвах. Поступление воды в почву и ее расход характеризуетсн водным балансом.

Статьи приходаводы в почву: атмосферные осадки, грунтовые воды, конденсация из паров воды, поверхностный боковой приток, внутрипочвенный боковой приток.

Статьи расходаводы из почвы: испарение, транспираuия (десукция), фильтрация (грунтовый сток), поверхностный сток. внутриnочвенный боковой сток. Вес величины прихода и расхода воды выражаются в мм или в 3 /га. Обычно рассчитывается годовой баланс влаги. Если не nроисходит прогрессирующего иссушения или увлажнения территории , то сальдо водного баланса близко к нулю, а имеющиеся отклонения объясняются погодными условиями года.

Типы водного режима формируются под воздействием основных статей водного баланса, ведущими из которых являются осадки и исnаряемость. Отношение осадков к испаряемости характеизуется коэффициентом увлажнения (КУ), предложенным Г,Н.Высоцким и Н.Н.Ивановым.

Основы учения о водных режимах почв были заложения Г.Н. Высоцким и А.А.Роде. Ими было выделено 6 типов водного режима и несколько подтипов. В настоящее время принято выделять 14 тиnов водного режима.

Промывпой водный режим формируется в гумидных областях (таежно-лесная зона, влажные тропики и субтропики), где осадки: превышают испаряемость (КУ> 1). Атмосферные осадки ежегодно промачивают почвенио-грунтовую толщу до уровня почвенно- грунтовых вод, часто весной и осенью в таких почвах формируется верховодка. Для почв с промывным типом режима характерен вынос значительной части продуктов почвообразования за пределы почвенной толщи (подзолистые, красноземы, желтоземы и др.).

Периодически промывпой водный режим формируется на границе влажных (гумидных) и полувлажных (семигумидных) областей (КУ 0,8-1 ,2). Для таких территорий характерно промачивание атмосферными осадками почвенио-грунтовой толщи до уровня грунтовых вод один раз в 10-15 лет. Для почв с периодически промывным типом водного режима характерен заметный вынос продуктов почвообразования за пределы почвенной толщи или в нижнюю часть почвенного профиля (серые лесные почвы, оподзоленные и выщелоченные чернозёмы).

Непромывпой водный режим формируется в полувлажных (семигумидных) областях и полусухих (семиаридных) областях (КУ 1,0-0,33). Почвенная толща промачивается в пределах 1-2,5 м. Между промачиваемой толщей и капиллярной каймой грунтовых вод существует горизонт с постоянной в течение всего года низкой влажностью, близкой к ВЗ (мертвый горизонт, по Г.Н.Высоцкому). Для почв с непромывным водным режимом (чернозёмы степнойзоны, каштановые почвы сухих степей) характерно накопление продуктов почвообразования в почвенном профиле.

Аридный (сухой) водный режим формируетсяб в аридных областях (КУ<О,ЗЗ) (бурые полупустынные и серо- бурые пустынные почвы). В течение всего года в почвах влажность приближается к ВЗ и только после выпадения осадков несколько повышается.

Выпотной водный режим складывается в почвах семиаридного и аридного климата (КУ<О,55) при неглубоком залегании грунтовых вод. Капиллярная кайма грунтовых вод поднимается к поверхности почв, при этом влага испаряется, а растворённые в ней соли скапливаются в поверхностных горизонтах. Таким образом формируются гидраморфные солончаки и солончаковатые почвы. Вьrпотной режим подразделяется на собственно выпотной и периодически выпотной.

Десуктивно-выпотной водный режим формируется в почвах семимиаридного и аридного климата (КУ<О,55), но при более глубоком залегании грунтовых вод, чем у почв с выпотным режимом. Поэтому капиллярная кайма не достигает поверхности почвы, но охватывает зону распространения корневых систем и испаряется не физически, а десуктивно через посредство растений. В таких почвах (они называются полугидроморфными: лугово-черноземные, лугово­каштановые и др.) чередуются периоды с нисходящими (рано всеной) и восходящими токами влаги (летом). Водорастворимые соли скапливаются не в поверхностных горизонтах, а на верхней границе капиллярной каймы. Если грунтовые воды не засолены, то при таком водном режиме формируются почвы с повышенным плодо­ родием и лучшими условиями увлажнения по сравнению с почвами водоразделов с непромывным типом водного режима.

Паводковый водный режим характерен для речных пойм и дельт, где поверхность почвы ежегодно или раз в несколько лет подвергается затоплению паводковыми водами. Он распространен во всех природных зонах и сопровождается накоплением аллювиальных отложений. В межпаводковые периоды паводковый водный режим сменяется другим типом водного режима (промывной, непромывной, выпотной и др.), в зависимости от природной зоны и положения в рельефе.

Амфибиальный режим формируется при постоянном или длительном затоплении почв водой (морские и озерные мелководья, речные плавни и др.). ..

Мерзлотный водный режим характерен для областей вечной мерзлоты. В течение большей части года вода находится в форме льда, и только в летние месяцы почва оттаивает на небольшую глубину и формируется надмерзлотная верховодка.

Водозастойный водный режим характерен для болотных почв осферного и грунтового увлажнения при плохом дренаже. В течении большей части года влажность почвы сохраняется в пределах полной влагаемкости и лишь в засушливые периоды несколько снижается.

Периодически водозастойный режим характерен для болотых почв грунтового увлажнения с ярко выраженными сезанными колебаниями уровня грунтовых вод. При этом влажность почв варьирует от полной влагоёмкости до уровня ниже наименьшей влаrоёмкости.

Ирригационный водный режим создается при искусственном орошении. Он может существенно различаться в зависимости от норм и типа орошения, глубины залегания грунтовых вод, наличия и характера искусственного дренажа, водного режима природной зоны.

Осушительный водный режим создаётся при искусственном осушении болотных и заболоченных почв. Он также может существенно различаться в зависимости от норм и типа осушения, глубины залегания грунтовых вод после осушения и водного режима природной зоны.

41. Формирование почв происходит под влиянием поверхностных и грунтовых вод. Их роль сводится главным образом к перемещению взмученных веществ, растворенных соединений под влиянием гравитационных и капиллярных сил, гидролизу почвенных минералов; при застое воды развиваются глеевый и болотный процессы. Определенное влияние на почвообразование оказывают почвенно-грунтовые воды. Вода является средой, в которой протекают многочисленные химические и биологические процессы в почве. Для большей части почв на междуречных пространствах основным источником воды служат атмосферные осадки. Однако там, где грунтовые воды расположены неглубоко, они оказывают сильное воздействие на почвообразование. Под их влиянием меняется водный и воздушный режимы почв. Грунтовые воды обогащают почвы химическими соединениями, которые в них содержатся, в отдельных случаях вызывают засоление. В переувлажненных почвах содержится недостаточное количество кислорода, что обусловливает подавление деятельности некоторых групп микроорганизмов. В результате воздействия грунтовых вод формируются особые почвы.

42. Типы водного режима формируются под воздействием основных статей водного баланса , ведущими из которых являются осадки и испаряемость. Отношение осадков к испаряемости характеризуется коэффициентом увлажнения (КУ).

Основные учения отводных режимах почвы были заложены Г.Н.Высоцким и А.А.Роде. Ими было выделено 6 типов водного режима и несколько подтипов. В настоящее время принято выделять 14 типов водного режима.

  1. Промывной водный режим формируется в гумидных областях, где осадки превышают испаряемость (КУ>1 ). Атмосферные осадки ежегодно промачивают почвенно-грунтовую толщу до уровня почвенно-грунтовых вод, часто весной и осенью в таких почвах формируется верховодка. Для почв с промывным типом режима характерен вынос значительной части продуктов почвообразования за пределы почвенной толщи (подзолистые, красноземы, желтоземы и т.д)

    1. Периодически промывной водный режим формируется на границе влажных (гумидных) и полувлажных (семигумидных) областей (КУ 0,8-1,2). Для таких территорий характерно промачивание атмосферными осадками почвенно-грунтовой толщи до уровня грунтовых вод один раз в 10-15 лет. Для почв с периодически промывным типом водного режима характерен заметный вынос продуктов почвообразования за пределы почвенной толщи или в нижнюю часть почвенного профиля (серые лесные почвы, оподзоленные и выщелоченные черноземы).

  2. Непромывной водный режим формируется в полувлажных (семигумидных) областях и полусухих (семиаридных) областях (КУ 1.0-0.33). Почвенная толща промачивается в пределах 1-2,5 м . между промачиваемой толщей и капиллярной каймой грунтовых вод существует горизонт с постоянной в течении всего года низкой влажностью, близкой к ВЗ. Для почв с непромывным водным режимом (черноземы степной зоны, каштановые почвы сухих степей) характерно накопление продуктов почвообразования в почвенном профиле.

  3. Аридный (сухой) водный режим формируется в аридных областях (КУ <0,33) (бурые полупустынные и серо-бурые пустынные почвы). В течении всего года в почвах влажность приближается к ВЗ и только после выпадения осадков несколько повышается.

  4. Выпотной водный режим складывается в почвах семиаридного аридного климата (КУ<0,55) при неглубоком залегании грунтовых вод. Капилярная кайма грунтовых вод поднимается к поверхности почв, при этом влага испаряется, а растворенные в ней соли скапливаются в поверхностных горизонтах. Таким образом формируются гидроморфные солончаки и солончаковатые почвы. Выпотной режим подразделяется на собственно выпотной и периодически выпотной .

  5. Дескутивно-выпотной водный режим формируется в почвах семиаридного и аридного климата (КУ<0,55), но при более глубоком залегании грунтовых вод , чем у почв с выпотным режимом. Поэтому капилярная кайма не достигает поверхности почв , но охватывает зону распространения корневых систем и испаряется не физически, а дескутивно через посредство растений. В таких почвах чередуются периоды с нисходящими и восходящими токами влаги. Водорастворимые соли скапливаются не в поверхностных горизонтах, а на верхней границе капилярной каймы. Если грунтовые воды не засолены , то при таком водном режиме формируются почвы с повышенным плодородием и лучшими условиями увлажнения по сравнению с почвами водоразделов с непромывным типом водного режима.

  6. Паводковый водный режим характерен для речных пойм и дельт, где поверхность почв ежегодно или раз в несколько лет подвергается затоплению паводковыми водами. Он распространен во всех природных зонах и сопровождается накоплением аллювиальных отложений. В межпаводковые периоды паводковый водный режим сменяется другим типом водного режима (промывной, не промывной, выпотной и др.), в зависимости от природной зоны и положения в рельефе.

Регулирование водного режима – обязательное мероприятие в районах интенсивного земледелия. При этом осуществляется комплекс приемов, направленных на устранение неблагоприятных условий водоснабжения растений. Искусственно меняя приходные и расходные статьи водного баланса, можно существенно влиять на общие о полезные запасы воды в почвах и этим способствовать получению высоких и устойчивых урожаев сельскохозяйственных культур.

Регулирование водного режима основывается на учете климатических и почвенных условий, а также потребностей выращиваемых культур в воде. Для создания оптиманых условий роста и развития растений необходимо стремиться к уравниванию количества влаги, поступающей в почву, с ее расходом на транспирацию и физическое испарение, то есть созданию коэффициента увлажнения, близкого к 1.

В конкретных почвенно-климатических условиях способы регулирования водного режима имеют свои особенности. Улучшению водного режима слабодренированных территорий зоны достаточного и избыточного увлажнения способствуют планировка поверхности почвы и нивелировка микро- и мезопонижений, в которых весной и летом может наблюдаться длительный застой влаги.

На почвах с временным избыточным увлажнением для удаления избытка влаги целесообразно с осени делать гребни. Высокие гребни способствуют увеличению физического испарения, а по бороздам происходит поверхностный сток воды за пределы поля. Почвы болотного типа и минеральные заболоченные нуждаются в осушительных мелиорациях – устройстве закрытого дренажа или отводе избыточной влаги с помощью открытой сети.

Регулирование водного режима почв во влажной зоне с большим количеством годовых осадков не ограничивается осушительной направленностью. В ряде случаев даже на дерново-подзолистых почвах летом возникает недостаток влаги и потребность в дополнительном количестве воды. Эффективное средство улучшения влагообеспеченности растений в Нечерноземной зоне – двустороннее регулирование влаги, когда избыток влаги отводится с полей по дренажным трубам, а при необходимости подается на поля по тем же трубам или дождеванием.

43. Влагоемкость характеризует способность почвы удерживать влагу. Различают несколько видов влагоемкости, основными из которых являются наименьшая, капиллярная и полная.

  1. Наименьшая влагоемкость (полевая) — предельное количество влаги, которое способна удерживать почва в полевых условиях после стекания гравитационной воды и при отсутствии капиллярного увлажнения за счет грунтовых вод. При наименьшей влагоемкости в почве содержится максимальное количество воды, доступной для растений, так как водой заполнено 50—70 % пор почвы.

  1. Капиллярная влагоемкость — количество влаги, которое способна удерживать почва при наличии капиллярной связи с грунтовой водой, за счет которой она пополняется.

  1. Полная влагоемкость — содержание влаги в почве при условии полного заполнения всех пор водой.

  1. Влагоемкость почвы зависит от механического состава, содержания гумуса и структуры. Суглинистые и глинистые почвы имеют наибольшую влагоемкость по сравнению с почвами супесчаными и песчаными. Почвы, богатые гумусом, структурные, способны удерживать влаги больше, чем бесструктурные и слабогумусированные. Сельскохозяйственные культуры неодинаково требовательны к содержанию влаги в почве. Наилучшие условия для роста зерновых культур создаются при влажности почвы 30— 50 %, для зерновых, бобовых — 50—60, корнеплодов и технических культур — 60—70, луговых трав — 80—90 % полной влагоемкости.

  1. Водоподъемная способность — способность почвы медленно поднимать воду по капиллярным порам под действием менисковых сил (сцепление воды с почвенными частицами). Высота и скорость поднятия воды зависят от ширины капилляров: чем меньше их диаметр, тем выше и быстрее она поднимается. В крупных порах вода поднимается на меньшую высоту, но с большей скоростью. Почвы тяжелые бесструктурные обладают лучшей водоподъемной способностью по сравнению с почвами легкими и структурными.

54. Основные группы породообразующих минералов. Значение первичных и вторичных минералов.

- группа кварца и его разновидности;

- группа алюмосиликатов (корунд, полевые шпаты, слюды, каолинит);

- группа железисто-магнезиальных силикатов;

- группа карбонатов;

- группа сульфатов.

Ниже приводится краткая характеристика основных породообразующих минералов.

Кварц — наиболее распространенная модификация кремнезема, являющаяся существенной составной частью многих горных пород (гранита, кварцита, песка и др.). Плотность кварца — 2650 кг/м , твердость — 7, прочность, стойкость к выветриванию и химическая стойкость — очень высокие. Плавится кварц при 1710 °С; при быстром охлаждении расплава образуется кварцевое стекло. При температуре 573 °С кварц переходит из р-модификации в а-модификацию с увеличением в объеме на 0,82 %. Это может вызвать растрескивание кварцесодержащих пород при нагреве их выше этой температуры. Обычно цвет кварца молочно-белый; крупные прозрачные кристаллы кварца называют горным хрусталем, окрашенные в лиловый цвет — аметистом, а в золотисто-желтый — цитрином.

Халцедон — скрытокристаллическая разновидность кварца, содержащая до 1,5 % воды и примеси оксидов железа и алюминия.

Полевые шпаты (от нем. spalten раскалываться) — группа алюмосиликатов щелочных и щелочноземельных металлов. Полевые шпаты — самые распространенные минералы, составляющие более 50 % от массы изверженных пород (гранитов, сиенитов, габбро и др.).

Железистомагнезиальные силикаты — темноокрашенные минералы, входящие в состав основных и ультраосновных изверженных пород (габбро, базальты, диабазы и др.). Наиболее распространенные минералы этой группы — пироксены, амфиболы, роговая обманка и оливин.

Средняя плотность у этих минералов больше, чем у кварца и полевых шпатов, за счет присутствия железа — 3200…3800 кг/м ; твердость — 5,5…6,5. Отличительная черта железистомагнезиальных силикатов — высокая ударная вязкость, благодаря чему породы, в которых присутствуют эти минералы, имеют меньшую хрупкость и повышенную износостойкость. Цвет минералов этой группы — от темно-зеленого до черного; он зависит от содержания железа в их составе. Все минералы этой группы, за исключением оливина, стойки к выветриванию.

Слюды — группа минералов, представляющих собой водные алюмосиликаты слоистой структуры и обладающих весьма совершенной спайностью в одной плоскости, т. е. легко расщепляющиеся на тончайшие пластинки. Твердость слюд невысока — 2,5…3. Слюда — широко распространенный минерал изверженных и осадочных пород. Общее количество слюды составляет несколько процентов от массы всей земной коры, но промышленные месторождения слюды с крупными кристаллами (10 см и более) встречаются редко. Среди слюд наибольшее распространение имеют мусковит и биотит.

Мусковит — прозрачная калиевая слюда плотностью 2750… 3000 кг/м В настоящее время мусковит применяют в качестве электроизоляционного высокотемпературного материала, защитной (бронирующей) посыпки для рубероида, а также добавляют в составы огнеупорных красок и декоративных растворов.

Биотит — темная железистомагнезиальная слюда; плотность — 3000…3300 кг/м . Для строителей представляет интерес ее разновидность — вермикулит с молекулярной межслоевой водой. Благодаря этому вермикулит при нагревании до 900… 1000 °С вспучивается как гармошка, увеличиваясь в объеме в 15…20 раз. Вспученный вермикулит применяют для изготовления тепло- и звукоизоляционных материалов.

Асбест — группа минералов, водных силикатов магния и железа, кристаллы которых представляют собой тончайшие волокна, легко поддающиеся распушке (отсюда народное название асбеста — «горный лен»). В России находятся крупнейшие в мире месторождения наиболее ценного вида асбеста — хризотил-асбеста, используемого при производстве асбестоце-ментных изделий (п. 14.5).

Глинистые минералы — группа водных силикатов алюминия общей формулой. Эти минералы составляют основную массу глин. Образуются глинистые минералы в результате выветривания полевых шпатов в виде очень мелких частиц размером не более 0,01 мм, которые, в свою очередь, представляют агрегаты мельчайших кристаллов. Глинистые минералы гидрофильны и при увлажнении образуют пластичное тесто. Среди глинистых минералов чаще всего встречаются каолинит и монтмориллонит.

Каолинит— очень мягкий минерал белого цвета. Используется при производстве тонкой керамики, для получения бумаги и в качестве наполнителя в полимерных материалах.

Монтмориллонит — водный алюмосиликат переменного состава. Размер его чешуйчатых кристаллов еще меньше, чем у каолинита, благодаря чему он обладает высокой адсорбционной способностью и очень пластичен в увлажненном состоянии.

Карбонаты — группа минералов, представляющих собой соли угольной кислоты. Встречаются в основном в осадочных породах. Стойкость минералов невысокая. Основные представители минералов группы карбонатов — кальцит, магнезит и доломит.

Магнезит по свойствам близок к кальциту, но встречается значительно реже. Плотность — около 3000 кг/м3, твердость — 3,5…4,5. В отличие от кальцита растворяется в разбавленных кислотах лишь при нагревании. Образует породу того же названия.

Доломит — довольно распространенный минерал, по свойствам занимающий промежуточное положение между кальцитом и магнезитом.

Сульфаты — группа минералов, представляющих собой соли серной кислоты. В строительстве находят применение гипс, ангидрит и в меньшей степени барит.

Гипс — очень мягкий минерал. В чистом виде прозрачный, но обычно окрашен примесями в светло-серый, желтоватый или розоватый цвет. Гипс заметно растворим в воде. В природе встречается как самостоятельная порода и как цементирующее вещество в природных конгломератах.

Ангидрит — безводная разновидность гипса — существует в нескольких кристаллических формах. Природная. Цвет светло-серый, серо-голубой; за счет полупрозрачности дает эффект свечения изнутри.

Барит — бесцветные или белые кристаллы. Его применяют в бетонах и растворах для защиты от ионизирующих излучений.

Значение первичных и вторичных минералов.

К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы. К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гра­нит или сера в кратерах вулканов.

Значение первичных минералов разностороннее: от их количества (особенно крупнозернистых фракций) зависят агрофизические свойства почв. Они являются резервным источником зольных элементов питания, а также образования вторичных минералов.

Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие вывет­ривания, при осаждении и кристаллизации солей из водных рас­творов или в результате жизнедеятельности живых организмов. Это — кухонная соль, гипс, сильвин, бурый железняк и другие.

55.   Горные породы - понятие, свойства, процессы образования.

Классификация горных пород.

Горными породами называют природные образования, состоящие из отдельных минералов и их ассоциаций. Изучением состава, происхождения и физических свойств горных пород занимается наука петрография. Согласно ее данным, по своему происхождению все породы делятся на три основные группы:

1. Магматические (первичные) 2. Осадочные (вторичные) 3. Метаморфические (видоизмененные).

Магматические породы - образовались непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате ее охлаждения и застывания. В зависимости от условий застывания различают глубинные и излившиеся горные породы.  Глубинные возникли в результате постепенного остывания магмы при высоком давлении внутри земной коры. В этих условиях составляющие магмы кристаллизовались, благодаря чему образовались массивные плотные породы с полнокристаллической структурой: граниты, сиениты, лабрадориты и габбро.  Излившиеся породы образовались в результате вулканического извержения магмы, которая быстро остывала на поверхности при низкой температуре и давлении. Времени для образования кристаллов было недостаточно, поэтому породы этой группы имеют скрыто или мелкокристаллическую структуру и большую пористость: порфиры, базальты, вулканические туфы, пеплы и пемзы.

Осадочные горные породы-называют вторичными, поскольку они образовались в результате разрушения изверженных пород или из продуктов жизнедеятельности растений и животных организмов. Один из способов формирования этих горных пород – химические осадки, образующиеся в процессе высыхания озер и заливов. В результате в осадок выпадают различные соединения, которые со временем превращаются в травертин, доломит. Общая особенность этих пород – пористость, трещиноватость, растворяемость в воде.  К обломочным осадочным породам относятся сцементированные отложения (песчаники, брекчии, конгломераты) и рыхлые (пески, глины, гравий и щебень). Сцементированные отложения образовались из рыхлых. Например, песчаник – из кварцевого песка с известковым цементом, брекчия – из сцементированного щебня, а конгломерат – из гальки. Еще известны породы органического происхождения – известняки и мел. Они образуются в результате жизнедеятельности животных организмов и растений.

Метаморфические породы - образовались путем превращения изверженных и осадочных горных пород в новый вид камня под воздействием высокой температуры, давления и химических процессов. Среди метаморфических пород различают массивные (зернистые), к которым относятся мрамор и кварциты, а также сланцеватые – гнейсы и сланцы.

Свойства горных пород.

Декоративность. Важное свойство горных пород, позволяющее использовать их в качестве облицовочного материала, – декоративность. Имеется в виду эстетическая привлекательность природного камня, в первую очередь его цвет и рисунок.  Прочность.  Если говорить об использовании натурального камня в строительстве, то в этом смысле одним из важнейших его свойств является прочность, от которой зависит износостойкость материала. Чем прочнее камень, тем дольше он прослужит.  В зависимости от твердости минералов, входящих в состав горной породы и в значительной степени определяющих ее свойства, камни условно делятся на три группы:  прочные – кварциты, граниты, габбро;  средней прочности – мрамор, известняки, травертины;  низкой прочности – рыхлые известняки, туфы.

Плотность – это масса единичного объема вещества. От этого показателя зависит вес конструкции: чем выше плотность камня, тем конструкция будет тяжелее. По плотности камни делятся на легкие (плотность до 2200 кг/м3) и тяжелые (плотность более 2200 кг/м3). Плотность зависит от пористости породы и минералов, входящих в ее состав.

Пористость Пористость камня, который используется в качестве облицовочного материала, является одной из важнейших его характеристик. От пористости зависит водопоглощение и, соответственно, соле и кислотостойкость. А это основные показатели, влияющие на долговечность материала. Кроме того, общая пористость определяет прочность, теплопроводность, полируемость, обрабатываемость, декоративность камня и другие качественные характеристики. С повышением общей пористости снижается прочность и объем камня, ухудшается его полируемость, но уменьшается вес изделия и улучшается его способность к обработке.  Водопоглощение, соле, кислото и морозостойкость.  Другим важным свойством горных пород, связанным с пористостью, является показатель водопоглощения. От него и от минерального состава материала зависит кислото- и солестойкость камня, а также его морозостойкость. Ведь при замерзании вода в порах увеличивается в объеме на 9%, создавая мощное давление. Вода, проникая в поры материалов, оставляет на них после высыхания концентрированные растворы солей. Из них начинается рост кристаллов, создающих огромное кристаллизационное давление. При высоком водопоглощении и низкой пористости под этим давлением в материале образуются трещины. При высокой пористости камня кристаллизационное давление распределяется равномерно, и новые трещины не образуются (яркий пример – известняк). Кислотостойкость – свойство пород и материалов реагировать с различными кислотами, разрушая или преобразовывая горные породы. Мрамор реагирует на кислоты, в том числе на пищевые (лимонная, уксусная). Мрамор, травертины, известняки и доломиты разрушаются от действия соляной кислоты. Правда, в природе в свободном виде она не встречается, но в городах, где хлориды используют для борьбы со снегом, этот фактор риска значительно возрастает.  Все это означает, что в наружной отделке зданий лучше использовать породы, которые не разрушаются под воздействием неблагоприятных факторов и долго сохраняют свой внешний вид, гранит и известняк. Известняк хорош для цокольных конструкций. Недаром во всех крупных городах, стоящих в долинах рек и имеющих многовековую историю (Лондон, Париж, Кельн, Москва), все цоколи зданий сложены из известняка. В Москве, кстати, из известняка сложен цоколь стен и башен Московского Кремля. Для цоколя можно использовать и гранит, но в этом случае движение солей пойдет по кладочным швам.

56. Классификация осадочных горных пород, их роль в почвообразовании.

Этот вид горных пород на земной поверхности, а также вблизи нее образуется в условиях низких давлений и температур вследствие преобразований континентальных и морских осадков. Осадочные горные породы по способу образования подразделяются на 3 генетические группы:

1.обломочные (конгломераты, пески, алевриты, брекчии) – это грубые продукты, образовавшиеся в результате механического разрушения материнских пород;

2.глинистые – дисперсные продукты химического глубокого преобразования алюмосиликатных и силикатных минералов материнских пород, которые со временем перешли в новые минеральные виды;

3.биохемогенные, органогенные и хемогенные породы – продукты осаждения из растворов, при участии различных организмов, накоплений органических веществ либо продуктов жизнедеятельности различных организмов.

Осадочные почвообразующие породы

Хотя изверженные породы широко распространены, все же основные поверхности земной суши покрыты осадочными породами. Поэтому можно считать, что в современную эпоху почвообразовательный процесс происходит главным образом на осадочных породах.

Осадочные породы начали образовываться на нашей планете в самые ранние эпохи ее существования. В ходе геологической истории на земном шаре накопились огромные толщи осадочных пород разного возраста и разного типа. По подсчетам норвежского геохимика В. М. Гольдшмидта (1938), за время существования земной планеты с поверхности каждого 1 см2 в результате выветривания в эрозии было разрушено и смыто до 160 кг первичных магматических горных пород. Из них образовалось в среднем на каждый 1 см2 до 169,6 кг осадочных горных пород. Принимая во внимание, что поверхность земного шара составляет 510 100 934 км2, можно оценить вероятную массу всех осадочных пород, вместе взятых. Слоистые толщи осадочных пород накапливались на дне океана, морских и озерных водоемов и равнинах, окаймляющих горы, куда "они выносились ледниковыми, водными и воздушными потоками.

57. Агроруды, их типы, происхождение, применение в сельском хозяйстве.

Агроруды – это природные соединения, которые можно использовать в сельскохозяйственном производстве в качестве удобрений, мелиорантов, наполнителей, биостимуляторов, кормовых добавок.

1. Азотные (селитры)

Хорошо растворяются в воде, легко усваиваются растениями. Наиболее широко распространена натриевая (или чилийская) селитра (NaNO3). Самое крупное месторождение в Чили. Имеются незначительные запасы в Казахстане.

Калиевая селитра (КNO3), образование ее связано с хозяйственной деятельностью человека, она встречается в окрестностях курганов, древних городов и крепостей. Месторождения ее встречаются в Средней Азии, Казахстане, Степном Крыму.

2. Фосфорнокислые агроруды

Ими являются горные породы  содержащие апатит, фосфорит и вивианит. Используя различные фосфорные удобрения необходимо учитывать, что с ними в почву вносятся некоторые вредные элементы ( Pb, As, F).

3. Калийные агроруды

Это минералы сильвин, сильвинит, карналлит, каинит.

Основная часть калийных месторождений на территории нашей страны образовались в результате высыхания древнего Пермского моря, простиравшегося от Северного Ледовитого океана до берегов Каспия.

Крупнейшие месторождения Верхнекамское, Урало-Эмбинское, Прикарпатское.

Недостатком калийных удобрений является то, что содержащиеся  в них хлориды и сульфаты оказывают отрицательное действие на состояние всей окружающей среды.

4. Известковые агроруды

Большинство культурных растений лучше развиваются в условиях нейтральной среды.  В качестве известковых удобрений для нейтрализации применяют известняки, известковые туфы, доломиты, мергели. Это наиболее дешевый вид удобрений, так как они широко распространены в природе. . однако большое количество примесей снижает качество известковых пород. Содержание примесей более 20% делает непригодными для использования. Известняки и доломиты вносят в виде муки после их размола, известковые туфы и рыхлые мергели можно непосредственно вносить в почву. Плотные мергели рекомендуется вывозить на поле зимой и складировать кучами. Под влиянием холода и влаги они разуплотняются.

5. Гипсовые агроруды

для гипсования щелочных почв используют сыромолотый гипс. Гипсовые месторождения широко распространены в галогенных толщах пермского возраста Приуралья (пример Соликамск). Есть месторождения в Красноярском крае, Иркутской области, в Якутии (республика Соха).

6. Органические агроруды

Они являются  полными удобрениями, поскольку они содержат все необходимые элементы питания растений.

Торф образуется в условиях избыточного увлажнения и недостатка воздуха. Различают верховые, переходные и низинные торфы. Наибольшую ценность представляют низинные торфы. Они образуются в пониженных участках с близким уровнем грунтовых вод, обогащенных минеральными солями. Их можно использовать без предварительного компостирования.

Сапропель озерный ил – ценное азотное удобрение, но может содержать много кадмия.

Озерные и речные илы могут применяться непосредственно, либо компостируются с другими минеральными удобрениями. Перед применением их предварительно проветривают для окисления закисного железа, сильно угнетающего растения.

7. Агроруды, содержащие микроэлементы.

Используют бедные непромышленные руды, а так же отходы действующих рудников. При их длительном применении возникает опасность загрязнения почвы тяжэелыми металлами

8. Цеолиты

экологически чистое минеральное сырье, существенно снижают уровень поступления токсичных металлов  из почвы в растения. По происхождению это вулканические породы, широко распространены в земной коре.

Применение в сельском хозяцстве:

Восполнить недостаток питательных веществ в земледелии возможно за счет более широкого использования природных агроруд, круг которых значительно расширился в поледние годы. Их можно использовать не только для промышленной переработки, но и в качестве местных удобрений, структурообразователей почвы, биостимуляторов и кормовых добавок в рацион скота и птицы. Это, прежде всего природные сорбенты (минералы и горные породы), обладающие высокими адсорбционными, каталитическими и ионообменными свойствами. К ним относятся цеолиты, бентониты, диатомиты, опоки, трепелы, палыгорскитовые глины, вермикулиты, перлиты, глауконит и другие природные соединения.

Кроме того, руды, содержащие мышьяк, фтор, барий, серу, используют для изготовления ядохимикатов, средств борьбы против вредителей и болезней.