Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Н.В. Чернобровов Релейная защита

.pdf
Скачиваний:
13075
Добавлен:
06.11.2017
Размер:
45.6 Mб
Скачать

8-1. ОБЩИЕ СВЕДЕНИЯ

Для защиты линий от к. з. на землю (однофазных и двухфазных) применяется защита, реагирующая на ток и мощность нулевой последовательности. Необходимость специальной защиты от к. з. на землю вызывается тем, что этот вид повреждений является преобладающим, а защита, включаемая на ток и напряжение нулевой последовательности, осуществляется более просто и имеет ряд преимуществ по сравнению с рассмотренной выше токовой защитой, реагирующей на полные токи фаз. Защиты нулевой последовательности выполняются в виде токовых максимальных защит и отсечек как простых, так и направленных.

Напомним некоторые положения, касающиеся токов и напряжений ну левой последовательности, возникающих в сети при к. з. на землю (подробнее см. [Л. 29, 32]):

1. Ток и напряжение нулевой последовательности в какой -либо точке сети равны:

161

И с т о ч н и к о м появления токов нулевой последовательности можно считать напряжение U0K, появляющееся на каждой фазе в месте к. з. (точка K на рис. 8-1, а и б). Под влиянием этого напряжения в каждой фазе возникают токи I0. Они замыкаются по контуру фаза — земля через место повреждения (точка К) и заземленные нейтрали.

Так как неповрежденные фазы не связаны с точкой повреждения непосредственно, то для образования контура циркуляции токов I0 необходимо представить, что в месте замыкания на землю имеется у с л о в - н о е соединение между всеми фазами (показанное на рис. 8 -1, б пунктиром). Тогда в месте замыкания на землю проходит ток, равный сумме токов нулевой последовательности I0 всех трех фаз, который и

является действительным током повреждения: Iк = 3I0. Этот ток направляется через землю к заземленным нейтралям трансформаторов и через них возвращается в фазы сети.

Таким образом, при замыканиях на землю появление токов I0 возможно только в сети, где имеются трансформаторы с заземленныминейтралями.

При нескольких заземленных нейтралях ток нулевой последовательности, возникший в месте повреждения, разветвляется между нейтралями обратно пропорционально сопротивлениям их ветвей.

На рис. 8-2 показаны некоторые характерные случаи распределения токов нулевой последовательности в схемах сети. Направление токов, проходящих к месту к. з., принято за положительное.

Если заземлена нулевая точка трансформатора только с одной стороны линии электропередачи (рис. 8-2, а), то при замыкании на землю на этой линии токи нулевой последовательности проходят только на участке между местом повреждения и заземленной нулевой точкой.

Если же заземлены нулевые точки трансформаторов с двух сторон рас сматриваемого участка (рис. 8-2, б), то токи нулевой последовательности пр о хо дят по нем у с о беих стор о н о т места к . з .

Это позволяет сделать вывод, ч т о р а с п р е д е л е н и е т о к о в н у л е в о й п о с л е д о - в а т е л ь н о с т и в с е т и о п р е д е л я е т с я р а с п о л о ж е н и е м не генераторов, а з а - з е м л е н н ы х н е й т р а л е й.

162

Если трансформатор имеет соединение обмоток звезда — треугольник, то замыкание на землю на стороне треугольника не вызывает токов нулевой последовательности на стороне звезды. Поэтому защиты,

установленные в сети звезды, не действуют при замыкании на землю в сети треугольника.

163

8-2. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

а) Схема и принцип действия защиты

Защита (рис. 8-4) состоит из пускового токового реле 1 и реле времени 2. Реле 1 включается на фильтр тока нулевой последовательности, в качестве которого обычно используется нулевой провод трансформаторов тока, соединенных по схеме полной звезды. Реле времени 2 создает выдержку времени, необходимую по условию селективности.

Ток в реле 1 равен сумме вторичных токов трех фаз; пренебрегая погрешностью трансформаторов тока, получаем:

Согласно (8-46) и § 3-6, б ток в пусковом реле защиты появляется только в том случае, когда имеется ток I0. Поэтому защита нулевой последовательности, показанная на рис. 8-4, может работать при однофазных и двухфазных к. з. на землю.

164

на м3

б) Ток небаланса

Значение Iнб можно найти, если в выражении (8-46) учесть токи намагничивания трансформаторов тока; тогда

Очевидно, что второй член в выражении (8-5) является током небаланса. Обозначив его Iнб

и выразив первый член (8-5) через I0 , получим:

Выражение (8-6) показывает, что ток в пусковом реле защиты состоит из двух слагающих: о д н о обусловлено первичным током I0 и в т о р о е — погрешностью трансформаторов тока. Последнее искажает величину тока 3I0, на которую реагирует защита.

Как следует из (8-5), ток небаланса равен геометрической сумме намагничивающих токов трансформаторов тока:

Сумма намагничивающих токов обычно не равна нулю. Это объясняется тем, что токи намагничивания имеют несинусоидальную форму и, кроме того, различаются по величине и фазе вследствие нелинейности и неидентичности характеристик намагничивания и неравенства в величине вторичных нагрузок трансформаторов тока различных фаз.

Токи намагничивания состоят в основном из первой и третьей гармоник Iн а м1 и Iн ам 3 [Л. 35, 23]. При трехфазных к. з., качаниях и нагрузке токи третьей гармоники I фаз А, В и С практически совпадают по фазе и поэтому суммируются в нулевом

165

проводе трансформаторов тока арифметически (рис. 8-5, б).

При тех же режимах токи Iна м1 сдвинуты по фазе циклически приблизительно на 120° и суммируются

внулевом проводе геометрически (рис. 8-5, а).

Врезультате этого ток небаланса состоит, так же как и ток намагничивания, из первой и третьей

гармоник (Iнб1 и Iнб3).

Исследования показывают, что третьи гармоники Iна м 3 составляют около 20 — 40%, а первые Iна м1 —80 — 60% полного тока намагничивания.

Имея кривые намагничивания трансформаторов тока Е2 = f (Iнам) и определяя вторичные э. д. с. трансформаторов тока Е2, можно приближенно оценить [Л. 10] величины намагничивающих токов, а за-

тем Iнб1 и Iнб3, пользуясь формулами (8-8), вытекающими из диаграмм на рис. 8-5:

Действующее значение полного тока небаланса в нулевом проводе нахо дится по выражению

Значение тока Iнб.макc в нулевом проводе звезды трансформаторов тока обычно определяется при токе трехфазного к. з. в расчетной точке, поскольку I K(3) , как правило, больше, чем двухфазный ток к. з.

Д л я о г р а н и ч е н и я т о к а н е б а л а н с а необходимо работать в ненасыщенной части характеристики намагничивания и иметь одинаковые токи намагничивания во всех фазах. Чтобы обеспечить эти условия, трансформаторы тока, питающие защиту, должны:

а) удовлетворять условию 10%-ной погрешности при максимальном значении тока трехфазного к. з. в начале следующего участка;

б) иметь идентичные (совпадающие) характеристики намагничивания на всех трех фазах;

в) иметь одинаковые нагрузки вторичных цепей во всех фазах. В неустановившихся режимах под влиянием апериодического

тока к. з. токи намагничивания, а вместе с ними и токи небаланса могут значительно возрасти, что необходимо учитывать при выборе параметров защит, работающих без выдержки времени.

Чтобы исключить действие защиты от т.оков небаланса, величину тока сраб а- тывания пусковых реле защиты выбирают больше тока небаланса.

в) Уставки защиты

Время действия каждой защиты нулевой последовательности выбирается по условию селективности на ступень t больше t защиты предыдущего участка. Например, у защиты 1 (рис. 8-6) t1 = t2 + t. Величина t выбирается согласно (4-9). Выбирая выдержку времени на защите реагирующей на 3I0, необходимо учитывать, что эта защита может не действовать при к. з. за трансформатором, если при этом в рассматриваемой защите ток 3I0 = 0. Как уже отмечалось, при замыканиях на землю в сети одного напряжения появление тока I0 в

сети другого напряжения зависит от соединения обмоток трансформатора, связывающего эти сети, и заземления нейтралей в этих сетях.

Если сети высшего и низшего напряжений связаны между собой через трансформатор ТЗ с соединением обмоток λ/ или λ/λ,

166

ТО защита нулевой последовательности 3, установленная на трансформаторе ТЗ, может быть мгновенной, поскольку она не действует при к. з. и замыканиях на землю на стороне низшего напряжения. В результате этого выдержки времени (t2 и t1) остальных защит нулевой последовательности существенно уменьшаются и получаются меньше, чем t' у защит от междуфазных к. з., реагирующих на фазный ток (рис. 8-6). Это объясняется тем, что последние действуют при к. з. за трансформатором, вследствие чего их приходится согласовывать по времени с защитами на стороне низшего напряжения трансформаторов (рис. 8-6). Если же связь между сетями разного напряжения осуществляется через автотрансформатор ТЗ или трансформатор с соединением обмоток λ/λ, имеющим заземленные нейтрали, то, как показано на рис. 8-2, при замыкании на землю в сети одного напряжения ток I0 появляется в обеих се-

тях. В этом случае выдержки времени защиты нулевой последовательности сети одного напряжения должны согласовываться с защитами сети другого напряжения.

В этих условиях защита 3, работающая в предыдущем случае без выдержки времени (t3 = 0), будет иметь теперь t3 = t4 + t, т. е. время действия защит, реагирующих на ток I0, увеличивается и получается равным времени действия максимальных защит, реагирующих на фазный ток.

Ток срабатывания пусковых реле максимальной защиты нулевой последовательности выбирается: 1) из условия надежного действия защиты при к. з. в конце следующего (второго) участка и 2) из условия отстройки, от токов небаланса.

По п е р в о м у условию I с . з > 3IOKмин, а п о в т о р о м у

I с . з > Iнб.макс. Опреде-

ляющим является второе условие

 

I с . з = k Н Iнб.макс

(8-9)

где kН = 1,3 ÷ 1,5. Ток Iнб.макс рассчитывается для нормального режима или для режима к. з. в зависимости от выдержки времени защиты. Е с л и в ы д е р ж к а в р е м е н и t0

защиты нулевой последовательности п р е в ы ш а е т в р е м я д е й с т в и я tм.ф защит от междуфазных к. з., установленных на следующем участке, то I с . з защиты нулевой последовательности отстраивается только от небалансов в нормальном режиме, поскольку междуфазные повреждения отключаются быстрее, чем может подействовать защита нулевой последовательности.

Ток небаланса в нормальном режиме Iнб(н) обычно определяется измерением. У трансформаторов тока с I2НОМ = 5 А его значение колеблется от 0,01 до 0,2 А. Поэтому ток срабатывания по второму условию можно выбрать очень маленьким: примерно 0,5 — 1

авторичных (или 10—20% от IНОМ трансформаторов тока).

Ес л и t0 < tм.ф, то защиту нужно отстраивать от небаланса Iнб(к) при трехфазных к. з. в начале следующего участка. Отстройка ведется от максимального Iнб(к) при установившемся режиме, поскольку защита действует с выдержкой времени 0,5 с и больше. По данным опыта эксплуатации при правильно выбранных трансформаторах тока и их равномерной загрузке ток срабатывания можно выбрать в зависимости от значения кратности тока к. з. 2—4 А (вторичного тока).

Установившийся ток небаланса при к. з., необходимый для определения I с . з , должен находиться по выражению (8-8) и (8-8а).

Если трансформаторы тока работают в прямолинейной части характеристики, то тогда

третьи гармоники в Iнам малы. В этом случае можно пренебречь составляющей Iнб3 рассчитывая ток небаланса по выражению (8-7):

где kодн в зависимости от идентичности характеристик и нагрузок трансформаторов тока выбирается от 0,5—1; fi — погрешность трансформаторов тока, при подборе их по кривым

167

0мин

предельной кратности принимается равным 0,1;

I K(3) — максимальное значение тока трехфазного к. з. при повреждении в начале сле-

дующего участка.

Следует иметь в виду, что формула (8-10) дает приближенные результаты, что учитывается при выборе значения kН в (8-9).

Чувствительность защиты характеризуется коэффициентом чувствительности

где I — минимальный ток нулевой последовательности при однофазном или двухфазном к. з. на землю в конце второго участка. Надежность считается достаточной при kч ≥1,5.

Если в сети, где установлена защита, возможна работа какой -либо линии на двух фазах (например, во время действия ОАПВ), то ток срабатывания защиты нужно дополнительно отстроить от токов нулевой последовательности 3/0, появляющихся в указанном режиме, или принять выдержки времени защиты больше tО АП В .

8-3. ТОКОВЫЕ НАПРАВЛЕННЫЕ ЗАЩИТЫ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

В сетях с заземленными нулевыми точками, расположенными с обеих; сторон рассматриваемого участка сети, селективное действие максимальной токовой защиты нулевой последовательности можно обеспечить только при наличии органа направления мощности (по соображениям, аналогичным в § 7-1).

Направленные защиты нулевой последовательности действуют при к. з. на защищаемой линии и не работают при повреждениях на всех остальных присоединениях, отходящих от данной подстанции. Такое поведение защиты обеспечивается с помощью реле направления мощности, реагирующего на знак или направление мощности нулевой последовательности при к. з.

Выдержки времени на защитах, действующих при одном направлении мощности, подбираются по ступенчатому принципу. На рис. 8-7 показаны размещение направленных защит нулевой последовательности и график их выдержек времени. Схема защиты приведена на рис. 8-8.

Защита состоит из токового реле 1, реагирующего на появление к. з. на землю, реле мощности 2, определяющего направление мощности при к. з., и реле времени 3, создающего выдержку времени, необходимую по условию селективности.

Пусковое реле и токовая обмотка реле мощности включаются в нулевой провод трансформаторов тока на ток 3I0, а поляризующая обмотка (обмотка напряжения) реле

168

мощности питается напряжением 3U0 от разомкнутого треугольника трансформатора напряжения.

При таком включении реле 2 реагирует на мощность нулевой последовательности Sо = UоIо. С учетом угла внутреннего сдвига α поляризующей обмотки и равенств Uр = ЗU0, IР == 3I0 реле направления мощности согласно (7-1) реагирует на мощность:

где φp = φ0 — угол сдвига фаз между Uр и /р или U0 и /0.

Условия работы реле мощности и его поведение можно уяснить из рассмотрения векторных диаграмм напряжения и тока питающих реле (U0 и I0) при однофазных и двухфазных к. з. на землю (рис. 8-9 и 8-10).

О д н о ф а з н о е к. з.. [Л. 32, 13], например, на фазе А характеризуется следующими условиями, вытекающими из рис. 8-9, а:

1)В поврежденной фазе А под действием э. д. с. ЕА проходит ток к. з. 1А = Iк. Если принять активное сопротивление сети равным нулю, то ток 1А отстает от э. д. с. ЕА на

90°.

2)Токи в неповрежденных фазах 1В и /с равны нулю.

169

3) Напряжение поврежденной фазы А относительно земли в точке К UАK = 0, поскольку эта фаза имеет глухое замыкание на землю.

Из диаграммы 8-9, б следует, что ток IОК опережает напряжение UОК на 90°.

Векторная диаграмма однофазного к. з. в точке Р, удаленной от места к. з., отличается от предыдущего случая величиной UА

170