Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Н.В. Чернобровов Релейная защита

.pdf
Скачиваний:
13075
Добавлен:
06.11.2017
Размер:
45.6 Mб
Скачать

181

182

Поскольку защиты от замыканий на землю реагируют на составляющие тока и напряжения нулевой последовательности, то для анализа их работы весьма удобно пользоваться токораспределением не фазных, а нулевых токов, а для вычисления значения U, I0 и

Iз применять формулы (9-5), (9-6), (9-8) и (9-9).

Компенсированная сеть [Л. 36]. Рассмотрим сеть (рис. 9-5, а), нулевая точка которой заземлена через дугогасящую катушку ДГК, предназначенную для компенсации емкостных токов в месте повреждения.

183

При замыкании на землю напряжения во всех точках такой сети имеют те же значения, что и в сети с изолированной нулевой точкой.

9-2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ЗАЩИТЕ

Требования к защите от замыканий на землю в сети с малым током замыкания на землю существенно отличаются от требований, предъявляемых к защитам от к. з.

Поскольку замыкания на землю не вызывают появления сверхтоков и не искажают величины междуфазных напряжений, они не отражаются на питании потребителей, не влияют на устойчивость энергосистемы и не сопровождаются перегрузкой оборудования опасными токами. Поэтому в отличие от к. з. замыкания на землю не требуют немедленной ликвидации.

Однако отключение замыканий на землю является все же необходимым, так как в результате теплового воздействия тока замыкания на землю в месте повреждения возможно повреждение изоляции между фазами и переход однофазного замыкания в междуфазное к. з. Помимо того, из-за перенапряжений, вызываемых замыканием на землю, возможен пробой или перекрытие изоляции на неповрежденных фазах, что приводит к образованию двойных замыканий на землю в разных точках сети.

Как показывает опыт, в компенсированных сетях и сетях с малыми емкостными токами (20—30 А в сети 10 и 6 кВ) замыкания на землю могут оставаться довольно длительное время (до 2 ч), не вызывая развития повреждения и не нарушая работы потребителей.

Исходя из этого в СССР принято выполнять защиту от замыканий на землю в сетях с малым током повреждения с действием на сигнал.

Получив сигнал о появлении замыкания на землю, дежурный персонал принимает меры к переводу нагрузки поврежденной линии на другой источник питания, разгружает поврежденную линию и затем отключает ее.

З а щ и т ы от з а м ы к а н и я на з е м л ю должны быть селективными и иметь высокую чувствительность. Последнее вызывается тем, что токи повреждения, на которые реагирует защита, очень малы (5—10 А).

Кроме того, желательно, чтобы защита от замыканий на землю реагировала не только на устойчивые, но также и на неустойчивые повреждения.

Особые требования предъявляются к защите от замыканий на землю в сетях, питающих электродвигатели торфоразработок и передвижных установок. Здесь представляет опасность переход замыкания на землю одной фазы в двойное замыкание. При двойном замыкании на землю «шаговое напряжение» и «напряжение прикосновения» достигают значений, опасных для людей, обслуживающих установки. Поэтому для безопасности персонала,

184

ведущего добычу торфа, защита от замыкания на землю в таких сетях должна при появлении «земли» немедленно отключить поврежденный участок. Эти защиты должны отличаться особенно высокой чувствительностью, так как емкостные токи в сетях, питающих торфоразработки, обычно имеют величину около 0,5—1 А.

Замыкания на землю в воздушных сетях особенно в населенных районах также целесообразно отключать от защиты для обеспечения безопасности населения.

9-3. ПРИНЦИПЫ ВЫПОЛНЕНИЯ ЗАЩИТЫ ОТ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Простейшей защитой от замыканий на землю является общая н е с е л е к т и в н а я сигнализация о появлении замыкания на землю без указания поврежденного участка.

Такое устройство состоит из трех реле минимального напряжения (рис. 9-6, а), включенных на напряжение фаз относительно земли, или схемы с одним реле повышения напряжения (рис. 9-6, б), включенным на напряжение нулевой последовательности.

При появлении «земли» схемы дают сигнал, а затем дежурный поочередным отключением присоединений определяет поврежденный элемент. Указанный способ определения повреждения связан с кратковременным нарушением питания потребителей, требует

много времени и особенно неудобен на подстанциях без постоянного дежурного персо-

нала. В связи с этим неселективную сигнализацию необходимо дополнять селективной защи-

той от замыканий на землю. В качестве с е л е к т и в н ы х защит от замыканий на землю, указывающих поврежденный участок, применяются токовые и направленные защиты, реагирующие на токи и мощность нулевой последовательности [Л. 38].

Для обеспечения селективной работы защиты используется различие в величине и направлении токов, появляющихся при замыкании на землю на поврежденном и неповрежденном присоединениях. Реагируя на это различие, защита должна действовать только на поврежденном присоединении и не работать на неповрежденных присоединениях.

Однако токи, возникающие при замыканиях на землю на поврежденных и неповрежденных элементах, особенно в компенсированной сети, обладают недостаточно четкими и устойчивыми различиями, в связи с чем создание селективной защиты от замыканий на землю является сложной задачей, пока еще не имеющей полноценного и подтвержденного эксплуатацией решения.

В н е к о м п е н с и р о в а н н ы х сетях наиболее простым решением является применение токовых защит, реагирующих на емкостный ток сети 1. Но это оказывается возможным только при большом числе присоединений, когда суммарный емкостный ток сети во много раз превосходит емкостный ток каждого присоединения (см. § 9-5), так как только при этом условии можно обеспечить требуемую селективность защиты.

В к о м п е н с и р о в а н н ы х сетях емкостный ток основной частоты (50 Гц) компенсируется током дугогасящей катушки.

В связи с этим для действия защиты в компенсированной сети приходится создавать ток искусственным путем или использовать остаточные (естественные) некомпенсированные токи (например, активные и неосновных гармоник) или применять защиты, реагирующие на токи и

185

напряжения, возникающие в переходном режиме в первый момент повреждения.

Все известные и п р и м е н я е м ы е на п р а к т и к е з а щ и т ы м о ж н о п о д - р а з д е л и т ь на ч е т ы р е г р у п п ы :

1)защиты, реагирующие на естественный емкостный ток сети. Такой способ защиты возможен только при отсутствии компенсации или при наличии недокомпенсации емкостного тока сети;

2)защиты, реагирующие на токи нулевой последовательности, создаваемые искусственным путем;

3)защиты, реагирующие на установившиеся остаточные токи, возникающие в поврежденной линии при резонансной компенсации емкостных токов;

4)защиты, реагирующие на токи переходного режима, возникающие в первый момент замыкания на землю.

Ниже в краткой форме рассматриваются основные разновидности защиты каждой из этих групп.

9-4. ТОКОВЫЕ ЗАЩИТЫ, РЕАГИРУЮЩИЕ НА ЕМКОСТНЫЙ ТОК СЕТИ И НА ИСКУССТВЕННО СОЗДАННЫЕ ТОКИ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

а) Способы получения искусственного тока

На практике применяются следующие способы получения тока нулевой последовательности искусственным путем:

П е р в ы м с п о с о б о м получения тока, необходимого для действия защиты, является включение активного сопротивления параллельно дугогасящей катушке (рис. 9-5) с последующим его автоматическим отключением. При этом появляется активный ток, который проходит по поврежденной линии к месту замыкания и используется для действия защиты. В неповрежденных линиях активный ток определяется активными потерями данной линии и практически очень мал. Этот способ требует высоковольтного сопротивления и вспомогательной аппаратуры, появление активного тока в месте замыкания на землю ухудшает условия гашения дуги и способствует развитию повреждения. В связи с указанными недостатками в СССР активный ток для выполнения защиты не используется. За рубежом этот способ применяется.

В т о р ы м с п о с о б о м создания искусственного тока является работа с постоянной перекомпенсацией, при которой ток ДГК выбирается больше емкостного тока сети.

Избыточный ток 3I— 3I0С имеет индуктивный характер и используется для действия защиты. Величина избыточного тока ограничивается по условию гашения дуги и предупре-

ждения развития повреждения. Для сети 6-10 кВ избыточный ток не должен превышать 25—15 А.

Расстройка компенсации, хотя бы и в ограниченных пределах, ухудшает условия работы сети и поэтому не является желательным способом.

Т р е т ь и м с п о с о б о м создания тока для действия защиты является наложение на ток повреждения тока непромышленной частоты (например, 100 или 25 Гц), подаваемого от специального источника в цепь ДГК. Этот ток замыкается по тому же контуру, что и ток дугогасящей катушки. На появление этого тока реагирует защита.

Частота 100 или 25 Гц выбрана на основе имеющихся данных о том, что эти гармоники в естественном емкостном токе отсутствуют. На этом основана селективность защиты, исключающая работу защиты на всех присоединениях, кроме поврежденного. При высокой чувствительности защиты для ее действия достаточен ток примерно 3—5 А. Такой ток не ухудшает условия компенсации, и поэтому данный способ может иметь широкое применение, если опыт эксплуатации подтвердит надежность положенного в основу его принципа селективности.

б) Токовая защита, реагирующая на полный ток нулевой последовательности

186

Защита предназначена для радиальных сетей. В некомпенсированной сети она реагирует на естественный емкостный ток, а в компенсированной действует от остаточного тока перекомпенсации (если таковая предусмотрена). Основной трудностью в выполнении рассматриваемой защиты является обеспечение необходимой чувствительности при малых значениях тока повреждения — 10 А и меньше.

На рис. 9-7 показаны два варианта защиты, различающиеся своей чувствительностью. Реагирующий орган защиты состоит из токового реле 1, питающегося через фильтр нулевой последовательности. В схеме рис. 9-7, а используется трехтрансформаторный фильтр, рассмотренный в § 3-4. В схеме рис. 9-7, б в качестве фильтра применен специальный трансформатор тока нулевой последовательности (ТНП) особой конструкции.

ствие чего вторичные токи при замыкании на землю имеют весьма малую величину. Так, например, если по току нагрузки коэффициент трансформации трансформаторов тока nТ = 800/5, то при реальном значении тока замыкания на землю 20 А вторичный ток трансформаторов тока будет равен 0,124 А, т. е. очень мал.

2. Токовые реле, реагирующие на столь малые токи, имеют большое число витков и значительное сопротивление (примерно 30—40 Ом). Такое сопротивление реле соизмеримо с сопротивлением намагничивания трансформаторов тока нам. (рис. 3-1,6).

Вследствие этого значительная часть тока повреждения отсасывается в трансформаторы тока неповрежденных фаз и теряется па намагничивание трансформатора тока поврежденной фазы, при этом в реле попадает лишь 50—60 % вторичного тока замыкания на землю (в приведенном примере ток составляет только 0,06 А).

3. Токовое реле 1 не должно действовать от токов небаланса, возникающих при нагрузке и междуфазных к. з., для чего принимается I с . з >Iнб. В трехтрансформаториом фильтре ток небаланса согласно (8-7) равен сумме намагничивающих токов трансформаторов тока, образующих фильтр (§ 8-2), и имеет величину, соизмеримую с величиной вторичного тока повреждения.

Совокупность указанных причин и обусловливает относительно низкую чувствительность защиты от замыканий на землю, выполненной с помощью трехтрансформаторного фильтра.

187

Первичный ток срабатывания такой защиты получается не меньше 20—25 А.

Защита с трансформатором тока нулевой последовательности получается значительно чувствительнее.

Главное преимущество ТНП состоит в значительно меньшем небалансе и возможности подбора числа витков вторичной обмотки из условия наибольшей чувствительности защиты без каких-либо ограничений по нагрузке. В результате этого ТНП позволяет обеспечить действие защиты при первичных токах порядка 3—5 А, а при сочетании ТНП с высокочувствительными реле чувствительность защиты повышается до 1—2 А.

Вследствие этого схема защиты с ТНП (рис. 9-7, б) является основой для сети с малым током замыкания на землю.

Схема с трехтрансформаторным фильтром находит применение в воздушных сетях 35 кВ, для которых ТНП еще не получило распространения.

Опыт эксплуатации показал, что токовое реле 1 может неправильно работать на неповрежденных линиях в первый момент повреждения под влиянием бросков токов, появляющихся в неустановившемся режиме.

Исключить ложную работу защиты по указанной причине можно загрублением защиты по току срабатывания, введением выдержки времени или применением фильтра, не пропускающего в реле тока высших частот, составляющих значительную долю в токе неустановившегося режима. В схемах на рис. 9-7 для отстройки от броска емкостного тока предусмотрено реле времени 2. Схемы с включением реле через фильтр высокой частоты также применяются. Защита с фильтром выполняется без выдержки времени и поэтому может реагировать на кратковременные замыкания на землю.

Действие защиты фиксируется с помощью указательного реле 3.

в) Принцип работы и устройство ТНП

Устройство ТНП приведено на рис. 9-8. Магнитопровод 1, собранный из листов трансформаторной стали, имеет обычно форму кольца или прямоугольника, охватывающего все три фазы защищаемой линии. Провода фаз А, В и С, проходящие через отверстие ТНП, являются первичной обмоткой трансформатора, вторичная обмотка 2 располагается на магнитопроводе.

Токи фаз IА, 1В и 1С создают в магнитопроводе соответствующие магнитные потоки ФА, ФВ и Фс; складываясь, они образуют результирующий поток первичной обмотки:

188

Однако практически расположение проводов фаз относительно вторичной обмотки неодинаково. Коэффициент взаимоиндукции фаз со вторичной обмоткой к имеет различную величину, вследствие чего, несмотря на полный баланс первичных токов, сумма их магнитных потоков не равна нулю. Появляется поток небаланса, вызывающий во вторичной обмотке э. д. с. и ток небаланса.

Ток небаланса ТНП значительно меньше, чем в трехтрансформаторном фильтре; это объясняется тем, что в последнем суммируются вторичные токи, которые искажены погрешностью трансформации (/нам), особенно проявляющейся при насыщении стали, в то время как в ТНП трансформация тока не влияет на небаланс. В ТНП суммируются магнитные потоки, и ток Iнб зависит только от несимметрии расположения фаз первичного тока.

Для получения максимальной чувствительности защиты, питающейся от ТНП, сопротивление обмотки реле должно равняться сопротивлению ТНП. Пренебрегая сопротивлением вторичной обмотки z2 (рис. 9-8, б), можно выразить указанное условно равенством

189

Для исключения этого необходимо компенсировать влияние токов, которые могут проходить по свинцовой оболочке и броне кабеля. С этой целью броня и оболочка кабеля на участке от его воронки до ТНП изолируются от земли (рис. 9-9). Заземляющий провод присоединяется к воронке кабеля и пропускается через окно ТНП. При таком исполнении ток, проходящий по броне кабеля, возвращается по заземляющему проводу, поэтому магнитные потоки в магнитопроводе ТНП от токов в броне и проводе взаимно уничтожаются. Магнитопровод ТНП должен быть также надежно изолирован от брони кабеля.

г) Размещение защит в сети

190