Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(реф) Геном человека. Геном митохондрии. Геномика..doc
Скачиваний:
54
Добавлен:
21.08.2018
Размер:
87.55 Кб
Скачать

Проект «Геном человека»

В 1986 году группа ученых в США начала работу над проектом, позднее названным «Геном человека». Цель этого проекта заключалась в том, чтобы представить в виде карты полную последовательность (геном) ДНК человека.

1990-е годы вошли в историю как годы уверенного совершенствования возможностей определять последовательность полных геномов. Так, в 1995 году Институтом изучения генома в Роквилле, штат Мэриленд, была опубликована первая полная последовательность ДНК живого организма — бактерии Haemophilus influenzae. На определение всей последовательности у ученых ушло несколько лет.

За этой бактерий вскоре последовали другие организмы. Например, в 1996 году был определен первый геном эукариотической клетки (т. е. сложноорганизованной клетки, ДНК которой заключена в ядре) — клетки дрожжей Saccharomyces cerevisiae. Этим открытием увенчались совместные усилия шестисот ученых из Европы, Северной Америки и Японии. Каждое такое достижение требовало определения все более и более длинной последовательности и было важной вехой на пути к определению генома человека.

Важной фигурой в этом процессе стал Крейг Вентер, основавший позднее частную корпорацию «Celeron». Вентер внедрил в науку метод определения последовательности ДНК, позднее названный «методом беспорядочной стрельбы». Суть его в том, что определяемую ДНК организма разбивают на множество небольших фрагментов, каждый из которых вводят в автомат, определяющий последовательность ДНК. После того как будут определены последовательности каждого фрагмента, в действие вводят компьютерные программы, заново собирающие исходную последовательность. Такое интенсивное использование информационных технологий объясняет, почему многие ученые называют новую область исследований генома биоинформационной, а не биомолекулярной революцией.

В июне 2000 года Крейг Вентер и Фрэнсис Коллинз, руководители проекта «Геном человека», осуществлявшегося в Национальных институтах здоровья США, объявили о событии, названном ими «первой сборкой генома человека». По существу, это была первая реконструкция полного генома человека, выполненная методом беспорядочной стрельбы. Несколькими месяцами позже, в феврале 2001 года, был опубликован первый предварительный набросок генома человека. Обнаружились некоторые удивительные факты.

Например, давно было известно, что большая часть ДНК человека не входит в состав генов. Новые результаты показали, что ДНК человека содержит удивительно небольшое количество генов — порядка 30 000 – 50 000 генов. Однако они не организованы в одну длинную последовательность, а состоят из экзонов и интронов. Каждый ген человека кодирует приблизительно три различных белка, а не один белок.

В 2003 г. этот проект был успешно завершен. Ученые описали все 25 000 генов, присутствующих в хромосомах каждой клетки. За это время были созданы базы ДНК из образцов генов десятков тысяч людей.

Можно считать, что на первом этапе проекта «Геном человека» была расшифрована книга жизни. На следующем этапе предстоит выяснить, что представляют собой все гены и как кодируемые ими белки объединяются, образуя биологический портрет человека.

Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из хромосом человека, которое должно завершиться определением полной первичной структуры ДНК всех хромосом.

В течение последних лет исследования проводились в следующих направлениях:

1. Компьютерный анализ полного генома человека и его частей на основе информации в открытых базах данных. Разработка принципиально новых подходов к хранению, обработке и получению структурной информации из баз данных на основе вновь созданного программного обеспечения.

2. Идентификация новых генов на основе физического, хромосомного и функционального картирования, анализ найденных генов и регуляция их активности.

3. Установление генетических отношений между генами и предрасположенностью к заболеваниям различной природы. Выявление роли индивидуальных генов и их мутаций в этиологии и развитии некоторых заболеваний человека.

4. Развитие методов генной и геномной диагностики заболеваний человека на основе знания физической карты и последовательностей нуклеотидов.

5. Разработка методов генной терапии моногенных заболеваний на основе знаний о молекулярно-генетических механизмах их возникновения и развития.

6. Разработка открытых юридических, этических, законодательных, правовых, социальных и других аспектов исследований генома и использования информации о структуре и свойствах геномов отдельных людей. Предсказания путей развития медицины и здравоохранения на основе нового уровня знаний о геноме человека и формулирование соответствующих практических предложений.

Решение основной задачи программы «Геном человека» включает следующие этапы.

• На первом этапе необходимо завершить составление детальной генетической карты и отметить гены, отстоящие друг от друга на расстоянии, не превышающем в среднем 2 млн оснований (1 млн оснований равен 1 мегабазе — 1 Мб, от англ. baseоснование).

• Второй этап предполагает составление физических карт низкого разрешения каждой хромосомы (разрешение 0,1 Мб).

• На третьем этапе следует получить физическую карту высокого разрешения всего генома в виде охарактеризованных по отдельности клонов (клон содержит 5 Кб).

• Четвертый этап посвящен определению полной первичной структуры (секвенированию) всей ДНК генома человека (разрешение — 1 основание).

• На пятом, заключительном, этапе необходимо в найденных последовательностях нуклеотидов локализовать все гены организма и определить их функциональное значение.

Ученые подсчитали, что число возможных сочетаний генов человека составляет примерно 3.1047, тогда как число живших на Земле людей за всю историю человечества имеет порядок около 1011, что на десятки порядков меньше. Поэтому практически на земном шаре никогда не было, нет и не может быть двух людей с одинаковым набором генов. Даже вероятность того, что дети одних и тех же родителей (не считая, конечно, монозиготных близнецов) будут иметь одинаковый набор генов, равняется одному шансу на 64 триллиона возможностей. Так что каждый из нас генетически уникален.

На примере Великобритании, Кипра и Пакистана исследованы пути контроля генетических заболеваний в обществах с различными культурными установками. За последние двадцать лет доля детей, больных талассемией (наследственной гемолитической анемией), снизилась в некоторых из этих стран более чем в 20 раз. Основную роль в этом сыграла возможность выявления наиболее широко распространенных мутаций, вызывающих талассемию, и проведение ДНК-диагностики родителей, плода, а также новорожденных. В упомянутых странах до 80–100% семей с предрасположенностью к талассемии охвачены дородовой диагностикой. Это позволяет прервать беременность либо вовремя начать необходимое лечение ребенка.

Геномика находит практическое применение и в других странах. Так, в Финляндии созданы биочипы для определения различий в последовательности нуклеотидов в генах, отвечающих за наиболее распространенные в этой стране наследственные болезни. На научную и коммерческую сцену выходит новое направление в создании микрофлюидных чипов, или, иначе, «лаборатории в чипе», которые могут помещаться на ладони. Такие чипы совмещают в себе комплекс традиционных приборов, которые в обычном исполнении могут занимать целую комнату. Наиболее значительным достижением в этом направлении является создание системы, тестирующей наличие биологического оружия в полевых условиях за 30 мин.

Значительных успехов удалось достигнуть в изучении экспрессии генов – синтеза закодированных в них белков. Ведутся работы по характеристике экспрессии генов в различных тканях, созданию ДНК-библиотек. Группа японских исследователей завершает характеристику ДНК-библиотек для 300 типов тканей человека, т.е. практически всех имеющихся типов тканей.

Френсис Коллинз, руководитель программы «Геном человека» в США, директор Национального института исследований генома человека, дает такой прогноз результатов геномных исследований:

2020 г.

  • На рынке появляются лекарства от сахарного диабета, гипертонии и других заболеваний, разработанные на основе геномной информации.

  • Терапия онкологических заболеваний, прицельно направленная на свойства раковых клеток.

  • Фармакогеномика становится общепринятым подходом для создания многих лекарств.

  • Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям.

  • Демонстрация безопасности генной терапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

2030 г.

  • Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой.

  • Каталогизированы гены, участвующие в процессе старения.

  • Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека.

  • Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях.

2040 г.

  • Все общепринятые меры здравоохранения основаны на геномике.

  • Определяется предрасположенность к большинству заболеваний (при или до рождения).

  • Доступна эффективная профилактическая медицина с учетом особенностей индивида.

  • Болезни определяются на ранних стадиях путем молекулярного мониторинга.

  • Для большинства заболеваний доступна генная терапия.

  • Замена лекарств продуктами генов, вырабатываемых организмом при ответе на терапию.

  • Средняя продолжительность жизни достигнет 90 лет.

  • Серьезные дебаты о возможности для человека контролировать свою собственную эволюцию.