Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.Ф.Черняев. Основы русской геометрии.doc
Скачиваний:
27
Добавлен:
02.11.2018
Размер:
5.65 Mб
Скачать

2.9. Строение физического

пространства

Известно, что проблема бесконечного включает дихотомию взаимосвязи двух пар категорий, с одной стороны, различие конечного и бесконечного, с другой  покоя и движения. Попарно существование противоположных категорий обусловливает различие в подходе к описательному отображению космических тел и структур. Это различие прежде всего относится к первичным понятиям: тело-точка, прямая-луч, плоскость, движение, время и т.д.

Простейшее тело в динамической геометрии можно представить как материальную сферу, бесконечную внутрь и отграниченную собственной поверхностью от окружающего пространства. Тело, как вещественное образование, формирует плотностную структуру и влияет на внешнее пространство в соответствии с энергетической напряженностью, создаваемой количественной величиной своих свойств.

Тело можно представить точкой только тогда, когда ее параметры и собственная напряженность несопоставимы по рангу с параметрами и напряженностью окружающего пространства и тел, образующих структуру данного пространства.

Линия или прямая есть условный след от движения точки (тела) в пространстве. И начало, и конец линии входят в поверхность «динамических» точек. Линия, на участке от поверхности одной точки-сферы до поверхности другой, имеет конечную длину.

Если эту же прямую продолжить за пределы поверхности конечных точек-сфер, внутрь их, то прямая станет иметь бесконечную длину, не отождествляемую ни с какими действительными числами.

Вернемся к бесконечной прямой на плоскости и точке N вне ее, через которую проводится прямая. Это плотностная точка и аналогичную плотностную функцию имеет ближайшая к N точка М на «бесконечной» прямой. Они взаимодействуя “создают” поле напряженности (штрихи на рис. 26), и для них, как уже говорилось, отсутствует прямая АВ на которой находится М. Именно движение прямой через точку N, «сопровождаемое» неявным движением точки М вдоль прямой АВ становится фактором определяющим истинную форму образуемых параллельных.

Образующий луч Л (рис. 26) в природе отсутствует. Он  фигурное отображение факта силового взаимодействия между центрами и соединяет плотностные точки, которые в своем движении, “выписывают” различные как плоские, так и объемные фигуры. Это как бы изменяемая ось греческой колесницы.

Неявное существование образующего луча создает возможность в статико-динамической геометрии обобщения геометрий Евклида, Лобачевского и Римана в одной и той же области пространства простым “замораживанием" отдельных линий (или всех). Последнее свидетельствует о том, что полудинамические и статические геометрии являются производными элементами динамической геометрии.

В пространственных полудинамических системах образующий луч Л всегда подвижен, и каждая его концевая точка в процессе движения описывает геометрическую фигуру, соответствующую уравнению движения и коэффициенту связности. Естественно, что в уравнении движения зашифрована и напряженность области концевых точек луча и пространства, в котором луч движется. (Везде предполагается, что след движения остается только от перемещения концевых точек.)

Основной способ движения образующего луча собственное удлинение или сокращение (пульсация) с определенным периодом, сочетающийся с возможным вращением и некоторым пространственным перемещением, например в пространстве декартовых координат. Поэтому кривые (следы), плоскости и пространства всех геометрий, включая геометрии Евклида, Лобачевского и Римана, описываются образующим лучом, один конец которого может двигаться по линии или оставаться неподвижным, а другой, в движении, удлиняться или сокращаться. На рис. 36 показано, как, двигаясь на плоскости, образующий АО от точки А до точки А', остается неизменным по длине и описывает дугу окружности полностью в соответствии с геометрией Евклида. В точке А' он в движении начинает укорачиваться и до точки А" движется по сферической кривой, описывая линию положительной кривизны в соответствии с геометрией Римана. В точке А" происходит следующий перелом и образующий на участке А" А"' начинает описывать линию отрицательной кривизны по геометрии Лобачевского до точки А"', после которой линия движения снова меняет «свою» геометрию и т.д. Переломные точки А', А", А", А"" имеют статическую для этой области величину луча, и потому луч в них может быть отнесен к геометрии Евклида. Перелом есть изменение формального качества линии, процесс перехода от одной кривизны к другой.

Рис. 36. А

Л А

Л

АЛ М Л А

Оба конца луча могут совершать любые движения, описывать самые различные фигуры. Так, например, если конец луча, описывающий кривую AA'A"A'"... (см. рис. 36), замкнется при одновременном движении другого конца-точки О по прямой, то выписывается объемная фигура  профилированный цилиндр. Если же точка О будет двигаться по окружности, то вместо цилиндра получается тор того же профиля. Таким образом, возникновение искривления как «положительного», так и «отрицательного», связано с изменением длины луча, создающего это «искривление». Длина луча, в свою очередь, зависит от напряженности пространства в различных направлениях от точки, из которой он исходит. Изменение напряженности не есть искривление поверхности и не приводит к нему, а вызывает изменение метричности. И, следовательно, численной длины луча. Покажем это на примере (рис. 37). Пусть луч , исходящий из условной точки О, двигаясь по отрезку окружности АВО, начал удлиняться и в точке А' пересек прямую А"О. Продолжая дальнейшее движение, он пересек также прямую ОВ"  окончание дуги АВ.

Дуга АВ разделена прямыми на четыре равных отрезка k, 1, т, п. Прямые, разделившие дугу, продолжены до пересечения эквипотенциальной линии А" В" и также делят эту дугу на четыре равных отрезка k", l, т", п". В пространстве отрезки

k" = k= l = 1 = т" = т = п" = п,

как следствие пропорционального изменения напряженности от точки О к периферии поверхности. Поскольку пропорциональность н

Рис. 37.

апряженности сохраняется на всей поверхности, то отрезок А'В' делится на четыре части k, l, т', п', так что:

k' = l = m' = п',

хотя по евклидовой и римановой геометрии k' п'.

Естественно также, что

k = k = k; l = l = l"; m = m' = m"; п = п' = п".

То есть все отрезки физически равны между собой так, что отношение каждого из отрезков к длине соответствующего луча между эквипотен-циальными дугами будет величиной постоянной. Именно это свойство напряженности пространства обусловливает образование пространственных ячеек  основных элементов динамической геометрии. Напряженность и изменение метричности (кривизна относительно статичности)  это те факторы, которые не учитывались в теории кривизны ни Гауссом, ни Риманом. Отметим, что, похоже, кривизны поверхностей, а тем более кривизны объемов в пространстве не существует. А поскольку геометрическое пространство отображает динамическую структуру реального мира, то эмпирическое подтверждение ее адекватности этому миру можно получить на поверхности Земли.

Приведем описание нескольких экспериментов, подтверждающих такую возможность. В долине вблизи гор можно построить горизонтальную мерную милю из идеального материала длиной в 3 км (с точностью до 1 см). Произвести геодезическую съемку этой мили и перенести ее размеры теодолитом на горное плато на высоту одного, а лучше 2 км, и там построить другую горизонтальную мерную милю той же длины. Современные геодезиче­ские приборы позволяют провести операцию переноса размеров на несколько десятков километров с точностью до 1-2 см. В соответствии с геометрией Евклида мили и в долине и на плато должны быть равной длины. Однако миля на плато на высоте 1 км будет на 47 см длиннее мили в долине, а на высоте 2 км  на 94 см.

Следует замерить милю в долине несколькими металлическими мерными линейками, проведя ими же в аналогичных условиях измерение мили на плато, убедиться, что она в точности, до ошибок измерения, равна миле в долине, а следовательно, мерные линейки изменили свою длину.

Другой эксперимент: на горе с горизонтальным плато на высоте 2 км выложить горизонтально из 40-50 стальных стержней длиной по 20-25 м (± 0,1 мм) единый стержень километровой длины. Отметки его концов перенести теодолитом в долину под горой, потом разобрать конструкцию, перебросить ее в долину и вновь собрать. Согласно геометрии Евклида собранная конструкция будет длиннее отметок на 32 см. Однако стержни при измерении метром окажутся в рамках отметок ± ошибка измерения.

Наконец можно просто провести геодезическими приборами измерение отрезка относительно горизонтальной поверхности в долине на длине 10 км и, замерив такую же длину, перенесенную на плато на высоту 2 км, убедиться с достаточно грубым приближением (± 25-30 см) в появлении при измерении отрезка почти трехметровой длины. (Можно предположить, что аналогичные нестыковки уже встречались картографам и геодезистам но не получали объяснения.)

Рассмотрим в общих чертах структуру пространственной ячейки отграниченной нейтральными зонами. Пространственные первичные ячейки, соизмеримые по напряженности с напряженностью окружающего пространства, образуются ядрами по периметру своей нейтральной зоны. В настоящей работе напряженность схематически обозначается условной линией, как бы оставляемой ядром тела, взаимодействующего с пространством и другим телом. Эти линии по наглядности являются некоторым подобием фарадеевых силовых линий, а в геометрии это геодезические линии.

Прямые напряженности выходят из пространства одного ядра 1 (рис. 38) с фиктивным центром О1 и входят в пространство другого ядра 2 с фиктивным центром О2. Линии напряженности О1АО2, О1ВО2, О1СО2..., соединяющие фиктивные центры, в пространстве параллельны. В точках А, В, С, D, ... они испытывают кажущееся преломление, обусловленное зоной единой минимальной напряженности  нейтральной или эквипотенциальной зоной.

Я

Рис. 38.

чейка, например, О3 образуется только тогда, когда оба ядра имеют пространственную линию общей эквипотенциальной зоны (нейтральные зоны), как бы выделяющую их из окружающего пространства. Эти зоны образует для них единую систему, не позволяют ядрам покинуть ее. Именно ячейки обусловливают дискретность пространства одного ранга.

Первичные ячейки через нейтральные зоны взаимодействуют с окружающими ячейками и входят в состав ячеек несоизмеримого ранга. Общая структура пространства  иерархия равенства. В пространстве ячейки между ядром и нейтральной зоной могут существовать спутники ядра 3 с центром О3. Между спутником и ядром также существует нейтральная зона А' В' С' ... А"В"С", охватывающая спутник эллиптической сферой. Выходящие из центра O1 линии входят в центр О3 или замыкаются в нейтральной зоне. Радиус (статический) спутника определяется гранич­ными условиями. Пространство ячейки, ядра и спутника всегда находятся в движении.

Ядро как элемент ячейки и самостоятельная система единой внутренней напряженности имеет сложную структуру, обусловленную материальностью самого образования. Оно включает несколько «скорлуп»-сателлитов 1 (рис. 39.), у которых нейтральная зона 2 каждой скорлупы находится либо внутри этой поверхности,

л

Рис. 39.

ибо у самой поверхности, что и удерживает их в единой системе. Поэтому сферы сателлитов, взаимодействуя нейтральными зонами, образуют на своей внешней поверхности равновеликую напряженность, интегрированную уже как напряженность самого ядра. Пространство (рис. 39.) внутри скорлуп материально и имеет напряженность более высокого ранга, чем снаружи. В этом пространстве может находиться внутреннее вещественное ядро-керн 3. Его напряженность несоизмерима по рангу ни с напряженностью пространства ячейки, ни с напряженностью сателлитов. Она есть плотность другого ранга.

Выводы:

Геометрическое пространство появляется только тогда, когда имеет место явное или неявное механическое движение точек-тел. В статических геометриях пространство отсутствует, поскольку отсутствует взаимодействие фигур с пространством.

Уравнения, описывающие движущиеся в пространстве точки, “создают” между ними неявную зону изменяемой плотности (аналогию анизотропного пространства).

Движущиеся в пространстве на бесконечность точки “взаимодействуют” между собой по прямой  образующей.