Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика_Экз.ОТВЕТЫ!.docx
Скачиваний:
27
Добавлен:
05.11.2018
Размер:
543.08 Кб
Скачать

Квантование энергии электрона в атоме

Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения (латинское "дискретус" означает разделенный, прерывистый), говорят, что они квантуются. В 1900 г. немецкий физик М. Планк, изучавший тепловое излучение твердых тел, пришел к выводу, что электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно ΔE = hν, где ΔE - энергия кванта, Дж; ν - частота, с-1; h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·10−34 Дж·с. Кванты энергии впоследствии назвали фотонами.

Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии. Еще в 1885 г. швейцарский физик и математик И.Я. Бальмер установил, что длины волн, соответствующие определенным линиям в спектре атомов водорода, можно выразить как ряд целых чисел. Предложенное им уравнение, позднее модифицированное шведским физиком Ю.Р. Ридбергом, имеет вид: 1 / λ = R(1 / n12 − 1 / n22), где λ - длина волны, см; R - постоянная Ридберга для атома водорода, равная 1,097373·105 см−1, n1 и n2 - целые числа, причем n1 < n2.

Первая квантовая теория строения атома была предложена Н. Бором. Он считал, что в изолированном атоме электроны двигаются по круговым стационарным орбитам, находясь на которых, они не излучают и не поглощают энергию. Каждой такой орбите отвечает дискретное значение энергии. Переход электрона из одного стационарного состояния в другое сопровождается излучением кванта электромагнитного излучения, частота которого равна ν = ΔE / h,

где ΔE - разность энергий начального и конечного состояний электрона, h - постоянная Планка.

Дискретность энергии электрона является важнейшим принципом квантовой механики. Электроны в атоме могут иметь лишь строго определенные значения энергии. Им разрешен переход с одного уровня энергии на другой, а промежуточные состояния запрещены.

17. Гармонический осциллятор в

квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

. Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых следующее дифференциальное уравнение в частных производных имеет решение в классе квадратично интегрируемых функций.

Для решение имеет вид: функции  — полиномы Эрмита:

Данный спектр значений E заслуживает внимания по двум причинам: во-первых, уровни энергии дискретны и равноотстоящи, то есть разница в энергии между двумя соседними уровнями постоянна и равна , во-вторых наименьшее значение энергии равно . Этот уровень называют основным, вакуумом, или уровнем нулевых колебаний. Нулева́я эне́ргия — минимальный уровень энергии, который может иметь данная квантовомеханическая система.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией. Разрешенные переходы гармонического осциллятора удовлетворяют правилу отбора: где nf и ni — квантовые числа конечного и начального состояния, соответственно. То есть, переходы могут происходить только

18. Тунне́льный эффект, туннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

Согласно классической механике, частица может находиться лишь в тех точках пространства, в которых её потенциальная энергия — Upot, меньше полной. Это следует из того обстоятельства, что кинетическая энергия частицы не может (в классич. физике) быть отрицательной, так как в таком случае импульс будет мнимой величиной. То есть, если две области пространства разделены потенциальным барьером, таким, что , просачивание частицы сквозь него в рамках классической теории оказывается невозможным. В квантовой же механике, мнимое значение импульса частицы соответствует экспоненциальной зависимости волновой функции от её координаты. Это показывает уравнение Шрёдингера с постоянным потенциалом: (упрощенное уравнение Шрёдингера в одномерном случае) где координата; полная энергия, потенциальная энергия, редуцированная постоянная Планка, масса частицы).

Если E > Upot, то решением этого уравнения является функция:

Пусть имеется движущаяся частица, на пути которой встречается потенциальный барьер высотой , а потенциал частицы до и после барьера . Пусть так же начало барьера совпадает с началом координат, а его «ширина» равна .

Для областей (до прохождения), (во время прохождения внутри потенциального барьера) и (после прохождения барьера).получаются соответственно функции:

,

где ,

Так как слагаемое характеризует отраженную волну, идущую из бесконечности, которая в данном случае отсутствует, нужно положить . Для характеристики величины туннельного эффекта вводится коэффициент прозрачности барьера, равный модулю отношения плотности потока прошедших частиц к плотности потока упавших:

Для определения потока частиц используется следующая формула: где знак * обозначает комплексное сопряжение.

Подставляя в эту формулу волновые функции, указанные выше, получим

Для потенциального барьера произвольной формы делаем замену где и находятся из условия

Тогда для коэффициента прохождения через барьер получаем выражение

19. В квантовой механике момент импульса квантуется, то есть он может изменяться только по «квантовым уровням» между точно определенными значениями. Эксперименты показывают, что большинство частиц имеют постоянный внутренний момент импульса, который не зависит от их движения через пространство. Этот спиновой момент импульса всегда кратен . Например, электрон в состоянии покоя имеет момент импульса

В классическом определении момент импульса зависит от 6 переменных , , , , , и . Переводя это на квантовомеханические определения, используя принцип неопределенности Гейзенберга, получаем, что невозможно вычислить все шесть переменных одновременно с любой точностью. Поэтому есть ограничение на то, что мы можем узнать или подсчитать о практическом моменте импульса. Это значит, что лучшее, что мы можем сделать — это подсчитать одновременно величину вектора момента импульса и его компоненты по осям.

Математически полный момент импульса в квантовой механике определяется как оператор физической величины из суммы двух частей, связанных с пространственным движением — в атомной физике такой момент называют орбитальным, и внутренним спином частицы — соответственно, спиновым. Первый оператор действует на пространственные зависимости волновой функции: где и  — координатный и импульсный оператор, соответственно, а второй — на внутренние, спиновые. В частности, для одной частицы без электрического заряда и без спина, оператор углового момента может быть записан как: где  — оператор набла. Это часто встречающаяся форма оператора момента импульса, но не самая главная, она имеет следующие свойства: и даже более важные подстановки с гамильтонианом частицы без заряда и спина:

20. Основное квантовое число в атоме водорода связано с полной энергией атома. Заметим, что максимальное значение квантового числа углового момента ограничена основным квантовым числом: оно может изменяться только до n − 1, то есть l = 0, 1, …, n−1. Из-за сохранения углового момента, состояния с тем же l, но различными m имеют ту же самую энергию (это выполняется для всех проблем с аксиальной симметрией. Кроме того, для водородного атома, состояния с тем же самым n, но разными l также вырождены (то есть, они имеют ту же самую энергию). Однако, это — определенная особенность атома водорода и не верно для более сложных атомов, которые имеют (эффективный) потенциал, отличающийся от кулоновского (из-за присутствия внутренних электронов, экранирующих потенциал ядра).

Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы. Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, радиальное (главное) (nr), орбитальное (l) и магнитное (m) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Орбитальное (азимутальное) квантовое число — в квантовой физике квантовое число ℓ, определяющее азимутальное распределение амплитуды волновой функции электрона в атоме, то есть форму электронного облака. Определяет подуровень энергетического уровня, задаваемого главным (радиальным) квантовым числом n и может принимать значения

Является собственным значением оператора орбитального момента электрона, отличающегося от момента количества движения электрона j лишь на оператор спина s:

Разность орбитального квантового числа и квантового числа полного момента не превосходит, по абсолютной величине, (спин электрона).

Успехи теории Бора в объяснении спектральных закономерностей в изучении атома водорода были поразительны. Стало ясно, что атомы – это квантовые системы, а энергетические уровни стационарных состояний атомов дискретны. Почти одновременно с созданием теории Бора было получено прямое экспериментальное доказательство существования стационарных состояний атома и квантования энергии. Дискретность энергетических состояний атома была продемонстрирована в 1913 г., в опыте Д. Франка и Г. Герца, в котором исследовалось столкновение электронов с атомами ртути. Оказалось, что если энергия электронов меньше 4,9 эВ, то их столкновение с атомами ртути происходит по закону абсолютно упругого удара. Если же энергия электронов равна 4,9 эВ, то столкновение с атомами ртути приобретает характер неупругого удара, т. е. в результате столкновения с неподвижными атомами ртути электроны полностью теряют свою кинетическую энергию. Это означает, то атомы ртути поглощают энергию электрона и переходят из основного состояния в первое возбужденное состояние,

E2 – E1 = 4,9 эВ.


22. Макроскопическая структура спектральных линий — это число линий и их расположение. Она определяется разницей в энергетических уровнях различных атомных орбиталей. Однако при более детальном исследовании каждая линия проявляет свою детальную тонкую структуру. Эта структура объясняется малыми взаимодействиями, которые немного сдвигают и расщепляют энергетические уровни. В этом случае движущееся ядро представляет собой эффективную петлю с током, которая в свою очередь создаёт магнитное поле. Однако электрон сам по себе имеет магнитный момент из-за спина. Два магнитных вектора, и сцепляются вместе так, что появляется определённая энергия, зависящая от их относительной ориентации. Так появляется энергетическая поправка вида

Для квантового числа полного момента многоэлектронной системы . Кроме того запрещены переходы между состояниями, в которых оба квантовых числа полного момента равны нулю.

Мультипле́тность (в химии) — величина, характеризующая спин атома или молекулы. Мультиплетность рассчитывается по формуле: , где N — число электронов в молекуле или атоме, s — спиновое квантовое число каждого электрона.

Так как большинство электронов в молекулах спарено, то для большинства веществ в основном состоянии характерен нулевой суммарный спин, то есть M = 1 (синглетное) состояние (исключением является, например, кислород, у которого основное состояние триплетное). При возбуждении молекулы один из электронов переходит в возбужденное состояние, иными словами на более высокий энергетический уровень. При этом мультиплетность может либо не меняться, если не меняется взаимная ориентация спинов, либо меняется, когда взаимная ориентация спинов изменяется. Скажем, из основного синглетного состояния молекула может перейти в возбужденное синглетное или триплетное (M = 3) состояние.

23. В 1896 г. Питер Зееман наблюдал расщепление спектра линий поглощения атомов натрия в магнитном поле. Впоследствии этот экспериментальный факт получил название Эффект Зеемана и обусловлен он тем, что в присутствии магнитного поля атом приобретает дополнительную энергию пропорциональную его магнитному моменту . Приобретенная энергия приводит к снятию вырождения атомных состояний по магнитному квантовому числу и расщеплению атомных линий. Полный гамильтониан атома в магнитном поле имеет вид: где H0 невозмущенный гамильтониан атома и VM возмущение, созданное магнитным полем где это магнитный момент атома, который состоит из электронной и ядерной частей, но последняя часть на несколько порядков меньше первой поэтому ею можно пренебречь. Следовательно, где это магнетон Бора, это полный электронный угловой момент, и - фактор.

Оператор магнитного момента электрона является суммой орбитального углового и спинового углового моментов , умноженным на соответствующее гиромагнитное отношение: где или , последнее называют аномальным гиромагнитным отношением; отклонение от 2 появляется из-за квантовых электродинамических эффектов. В случае LS связи для расчета полного магнитного момента суммируются все электроны: где и полный орбитальный и спиновый моменты атома, и усреднение делается по атомному состоянию с данной величиной полного углового момента.

Первое объяснение 3. э. было дано нидерл. физиком Х. Лоренцем в 1897 г. в рамках классич. теории, согласно к-рой движение электрона в атоме рассматривается как гармония, колебания линейного осциллятора. По этой теории спектр. линия при поперечном 3. э.

24. При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии. Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механики: волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом. В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения Np = 0,1

Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений. Количество электронов в отдельном атоме равно количеству протонов. Так как электроны являются фермионами, принцип Паули запрещает им принимать одинаковые квантовые состояния. В итоге, все электроны не могут быть в одном квантовом состоянии с наименьшей энергией (для невозбуждённого атома), а заполняют последовательно квантовые состояния с наименьшей суммарной энергией (при этом не стоит забывать, что электроны неразличимы, и нельзя сказать, в каком именно квантовом состоянии находится данный электрон). Примером может служить невозбуждённый атом лития (Li), у которого два электрона находятся на 1S орбитали (самой низкой по энергии), при этом у них отличаются собственные моменты импульса и третий электрон не может занимать 1S орбиталь, так как будет нарушен запрет Паули. Поэтому, третий электрон занимает 2S орбиталь (следующая, низшая по энергии, орбиталь после 1S).

Электронная оболочка атома — область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Каждая электронная оболочка может иметь определенное максимальное число электронов. Порядок заполнения электронных оболочек (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.

Правило Хунда (Гунда) определяет порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным. Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Квантовая теория подразумевает, что энергия электрона может принимать только определенные значения, т.е. квантуется. Энергия электрона, форма электронного облака и другие параметры описывают состояние электрона в атоме. Состояние электрона характеризуется совокупностью чисел, называемых квантовыми числами. Главное квантовое число n служит для отнесения состояния электрона к тому или иному энергетическому уровню, под которым понимается набор орбиталей с близкими значениями энер-гии. Главное квантовое число может принимать любое значение из области натуральных чисел, т.е.n=1, 2, 3. При переходе электрона с одного энергетического уровня на другой главное квантовое число изменяется. (Можно сопоставить с переходом электрона с одной стационарной орбиты на другую в модели Бора.) Энергетический уровень включает в себя несколько орбиталей. Орбитали с одинаковой энергией, принадлежащие одному энергетическому уровню, образуют энергетический подуровень. Отнесение орбитали к какому-либо подуровню производится при помощи побочного (орбитального) квантового числа l. Оно может принимать целочисленные значения от 0 до n-1. Т.е. для электрона с главным квантовым числом n орбитальное квантовое число l может принимать n значений от l=0 до l=n-1. Так, при n=1, l=0; при n=2, l=0 и l=1, при n=3, l=0, 1, 2. Число l входит в выражение для момента импульса электрона при его движении вокруг ядра: p=hÖ(l((l+1)) Орбитальное квантовое число показывает, какому подуровню данного энергетического уровня соответствует характер движения рассматриваемого электрона. Очень часто состояния электрона обозначают латинскими буквами, при этом состояние с l=0 называют s-орбиталью, l=1 — р-орбиталью, l=2 — d-орбиталью l=3 — f-орбиталью, l=4 — g-орбиталью и т.д. Электронные облака орбиталей с разными значениями l имеют разную конфигурацию, а с одинаковыми l похожую.