Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_Лекции по теории инф.doc
Скачиваний:
4
Добавлен:
12.11.2018
Размер:
452.61 Кб
Скачать

5. Кодирование звуковой информации

На сегодняшний день не существует единой стандартной системы кодирования звуковой информации, потому что приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации наиболее поздно.

По этой причине множество различных компаний, работающих в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Однако среди этих корпоративных стандартов можно выделить два основных направления.

В основе метода FM (Frequency Modulation) лежит утверждение о том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду и, следовательно, может быть описан числовыми параметрами или закодирован. Звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства — аналогово-цифровые преобразователи (АЦП).

Обратное преобразование для воспроизведения звука, закодированного числовым кодом, осуществляется посредством цифро-аналоговых преобразователей (ЦАП).

Вследствие таких преобразований звуковых сигналов неизбежны потери информации, связанные с методом кодирования. Поэтому качество звукозаписи с помощью методе FM обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окраской, характерной для электронной музыки.

В то же время данный метод обеспечивает весьма компактный код, поэтому он широко применялся в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.

Основная идея метода таблично-волнового (Wave-Table) синтеза заключается в том, что в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов.

Такие звуковые образцы называются сэмплами. Числовые коды, заложенные в сэмпле, выражают такие его характеристики, как тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые компоненты среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания.

Поскольку в качестве образцов используются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов, что в большей степени соответствует современному уровню развития вычислительной техники.

6. Режимы и методы передачи информации

Для корректного обмена данными между узлами локальной вычислительной сети применяются определенные режимы передачи информации:

симплексная (однонаправленная) передача;

полудуплексная передача (прием и передача информации источником и приемником осуществляются поочередно);

дуплексная передача (параллельная одновременная передача, т.е. каждая станция одновременно передает и принимает данные).

В информационных системах чаще всего используется дуплексная или последовательная передача данных. Существуют синхронный и асинхронный методы последовательной передачи данных.

Синхронный метод характеризуется тем, что данные передаются блоками. С целью синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи.

Эта последовательность составляет стандартную схему передачи данных при синхронном методе. При синхронной передаче данные передаются и в виде символов, и как поток битов.

Кодом обнаружения ошибки обычно является циклический избыточный код обнаружения ошибок (CRC), определяемый по содержимому поля данных.

Он позволяет однозначно определить достоверность принятой информации.

Преимущества метода синхронной передачи:

  • высокая эффективность;

  • высокая скорость передачи данных;

  • надежный встроенный механизм обнаружения ошибок.

Основной недостаток синхронного метода передачи данных — дорогое интерфейсное оборудование.

Асинхронный метод характеризуется тем, что каждый символ передается отдельной посылкой. Стартовые биты предупреждают приемник о начале передачи, а уже затем передается сам символ. Для определения достоверности передачи используется бит четности. Бит четности равен единице, если количество единиц в символе нечетно, и нулю — в противном случае. Последний бит, называемый «стоп-бит», сигнализирует об окончании передачи. Эта последовательность составляет стандартную схему передачи данных при асинхронном методе.

Преимущества метода асинхронной передачи:

  • несложная отработанная система передачи;

  • недорогое (по сравнению с синхронным) интерфейсное оборудование.

Недостатки метода асинхронной передачи:

  • третья часть пропускной способности теряется на передачу служебных битов;

  • невысокая скорость передачи по сравнению с синхронным методом;

  • невозможность определить достоверность полученной информации с помощью бита четности при множественной ошибке.

Метод асинхронной передачи применяется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных.