Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
23Voprosy_dlya_zacheta_k_matematike_dlya_yurist....docx
Скачиваний:
15
Добавлен:
25.11.2018
Размер:
268.82 Кб
Скачать

2. Физический и геометрический смысл производной

1) Физический смысл производной.

Если  функция y = f(x) и ее аргумент x являются физическими величинами,  то производная  – скорость изменения переменной y относительно переменной x в точке.  Например, если S = S(t) – расстояние, проходимое точкой за время t,  то ее производная – скорость в момент времени.  Если  q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени  t,  то  – скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая, – точка на кривой .

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точке называется предельное положение секущей  ,  если точка стремится к ,  двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x)  (т.е. график функции  y = f(x)).  Пусть в точке он имеет невертикальную касательную .  Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент  k).

По определению углового коэффициента , где – угол наклона прямой  к оси .

Пусть – угол наклона секущейк оси,  где  . Так как – касательная, то при

  .

Следовательно,

.

Таким образом, получили, чтоугловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке).  Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

 

      Замечание. Прямая, проходящая через точкуперпендикулярно касательной, проведенной к кривой в точке, называется нормалью к кривой в точке. Так как угловые коэффициенты перпендикулярных прямых связаны соотношением,  то уравнение нормали к кривой y = f(x) в точке будет иметь вид

,  если .

Если же, то касательная к кривой y = f(x) в точкебудет иметь вид , а нормаль                                     .

20. Основные правила дифференцирования. Дифференцирование элементарных функций.

Ключевые слова: функция, производная, правила нахождения производной, сложная функция

Производная — основное понятие дифференциального исчесления, характеризующее скорость изменения функции.

Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Функцию, имеющую конечную производную, называют дифференцируемой. Процесс вычисления производной называется дифференцированием.

Основные правила дифференцирования:

  • Если функция константа, т.е. y = C, где C - число, то (С)=0 .

  • Если функции u и v дифференцируемы в точке x, то (v+u)=v+u.

  • Если функция Cu , где C - постоянная, дифференцируема в точке x, то (Сu)=Сu .

  • Если функции u и v дифференцируемы в точке x, то (uv)=uv+uv.

  • Если функции u и v дифференцируемы в точке x и v(x)=0, то (vu)=v2uv−uv.

Дифференцирование сложной функции.

Рассмотрим функцию y = sin x2. Чтобы найти значение этой функции в фиксированнной точке x нужно: 1) вычислить x2; 2) найти значение синуса от полученного значения x2. Иными словами, сначала надо найти значение g(x) = x2, а потом найти sin g(x). В подобных случаях говорят, что задана сложная функция y = f(g(x)). В нашем примере u = g(x) = x2, а y = f(u) = sin u.

Пусть y = f(g(x)) - сложная функция, причем функция u = g(x) дифференцируема в точке x , а функция y = f(u) дифференцируема в соответствующей точке u. Тогда функция y = f(g(x)) дифференцируема в точке x, причем y=f(g(x))g(x). Запись f'(g(x)) означает, что производная вычисляется по формуле для f'(x), но вместо x подставляется g(x).

21. Приложения производной (на примере).

Применение производной в физике

В физике производная применяется в основном для вычисления наибольших или

наименьших значений для каких-либо величин.

Применение производной в алгебре

9.1. Применение производной к доказательству неравенств.

Одно из простейших применений производной к доказательству неравенств

основано на связи между возрастанием и убыванием функции на промежутке и

знаком ее производной.

Применение производной в доказательстве тождеств.

Доказательства тождества можно достигнуть иногда, если воспользоваться

одним очевидным замечанием:

Если на некотором интервале функция тождественно равна постоянной, то ее

производная на этом интервале постоянно равна нулю:

Применение производной для упрощения алгебраических и

тригонометрических выражений.

Прием использования производной для преобразования алгебраических и

тригонометрических выражений основан на том, производная иногда имеет

значительно более простой вид, чем исходная функция, благодаря чему, она

легко интегрируется, что и позволяет найти искомое преобразование исходного

выражения:

(надо спросить у кого-нибудь пример!!!!!!)

22. Интегралы и их приложения.

Интегральное исчисление, раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. Интегральное исчисление тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями Интегральное исчисление являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного.   Определённый интеграл. Пусть требуется вычислить площадь S «криволинейной трапеции» — фигуры ABCD (см. рис.), ограниченной дугой непрерывной линии, уравнение которой у = f (x), отрезком AB оси абсцисс и двумя ординатами AD и BC. Для вычисления площади S этой криволинейной трапеции основание AB (отрезок [ab]) разбивают на n участков (необязательно равных) точками а = x0 < x1 < ... < xn-1 < < xn = b, обозначая длины этих участков Dx1, Dx2, ..., Dxn; на каждом таком участке строят прямоугольники с высотами f (x1), f (x2), ..., f (xn) где xk — некоторая точка из отрезка [xk - 1, xk] (на рис. заштрихован прямоугольник, построенный на k-м участке разбиения; f (xk) — его высота). Сумма Sn площадей построенных прямоугольников рассматривается в качестве приближения к площади S криволинейной трапеции: S » Sn = f (x1) Dx1 + f (x2) Dx2 + f (xn) Dxn или, применяя для сокращения записи символ суммы S (греческая буква «сигма»): Указанное выражение для площади криволинейной трапеции тем точнее, чем меньше длины Dxk участков разбиения. Для нахождения точного значения площади S надо найти предел сумм Sn в предположении, что число точек деления неограниченно увеличивается и наибольшая из длин Dxk стремится к нулю.   Отвлекаясь от геометрического содержания рассмотренной задачи, приходят к понятию определённого интеграла от функции f (x), непрерывной на отрезке [а, b], как к пределу интегральных сумм Sn при том же предельном переходе. Этот интеграл обозначается Символ ò (удлинённое S — первая буква слова Summa) называется знаком интеграла, f (x) — подинтегральной функцией, числа а и b называются нижним и верхним пределами определённого интеграла. Если а = b, то, по определению, полагают кроме того,   Свойства определённого интеграла: (k — постоянная). Очевидно также, что (численное значение определённого интеграла не зависит от выбора обозначения переменной интегрирования).   К вычислению определённых интегралов сводятся задачи об измерении площадей, ограниченных кривыми (задачи «нахождения квадратур»), длин дуг кривых («спрямление кривых»), площадей поверхностей тел, объёмов тел («нахождение кубатур»), а также задачи определения координат центров тяжести, моментов инерции, пути тела по известной скорости движения, работы, производимой силой, и многие другие задачи естествознания и техники. Например, длина дуги плоской кривой, заданной уравнением у = f (x) на отрезке [a, b], выражается интегралом объём тела, образованного вращением этой дуги вокруг оси Ox,— интегралом поверхность этого тела — интегралом   Фактическое вычисление определённых интегралов осуществляется различными способами. В отдельных случаях определённый интеграл можно найти, непосредственно вычисляя предел соответствующей интегральной суммы. Однако большей частью такой переход к пределу затруднителен. Некоторые определённые интегралы удаётся вычислять с помощью предварительного отыскания неопределённых интегралов (см. ниже). Как правило же, приходится прибегать к приближённому вычислению определённых интегралов, применяя различные квадратурные формулы (например, трапеций формулу, Симпсона формулу). Такое приближённое вычисление может быть осуществлено на ЭВМ с абсолютной погрешностью, не превышающей любого заданного малого положительного числа. В случаях, не требующих большой точности, для приближённого вычисления определённых интегралов применяют графические методы (см. Графические вычисления).   Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами.   Выражения вида где функция f(x, a) непрерывна по x называются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (см., например, Гамма-функция).   Неопределённый интеграл. Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция — такая функция, производная которой равна данной функции. Таким образом, функция F (x) является первообразной для данной функции f (x), если F"(x) = f (x) или, что то же самое, dF (x) = f (x) dx. Данная функция f (x) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f (x) содержатся в выражении F (x) + С, которое называют неопределённым интегралом от функции f (x) и записывают   Определённый интеграл как функция верхнего предела интегрирования («интеграл с переменным верхним пределом»), есть одна из первообразных подинтегральной функции. Это позволяет установить основную формулу Интегральное исчисление (формулу Ньютона — Лейбница): выражающую численное значение определённого интеграла в виде разности значений какой-либо первообразной подинтегральной функции при верхнем и нижнем пределах интегрирования.   Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами   Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C, m, a, k — постоянные и m ¹ —1, а > 0).  

Таблица основных интегралов и правил интегрирования< ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾   Трудность Интегральное исчисление по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». Интегральное исчисление располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).   К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций где P(x) и Q(x) — многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от или же от x и рациональных степеней дроби В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм, Интегральный синус и интегральный косинус, Интегральная показательная функция).   Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл), а также на функции комплексного переменного (см. Аналитические функции) и вектор-функции (см. Векторное исчисление).   О расширении и обобщении понятия интеграла см. ст. Интеграл.   Историческая справка. Возникновение задач Интегральное исчисление связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи Интегральное исчисление в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывания метод, созданный Евдоксом Книдским и широко применявшийся Архимедом. Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма Интегральное исчисление Учёные Среднего и Ближнего Востока в 9—15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в Интегральное исчисление они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод был возрожден И. Кеплером. В более общей форме идеи этого метода были развиты Б. Кавальери, Э. Торричелли, Дж. Валлисом, Б. Паскалем. Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n-й степени, а затем — работы Х. Гюйгенса по спрямлению кривых.   В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм Интегральное исчисление были созданы независимо друг от друга И. Ньютоном и Г. Лейбницем. Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла òydx.   При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие Интегральное исчисление в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера. В начале 19 в. Интегральное исчисление вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии Интегральное исчисление в 19 в. приняли участие русские математики М. В. Остроградский, В. Я. Буняковский, П. Л. Чебышев. В конце 19 — начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий Интегральное исчисление (Б. Риман, А. Лебег и др.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]