Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ustroystvo_i_printsip_deystvia_struynyh_nasosov....docx
Скачиваний:
30
Добавлен:
22.12.2018
Размер:
430.52 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра «Разработка и эксплуатация нефтяных и газовых месторождений»

Специальность 090600-«Разработка и эксплуатация нефтяных и газовых месторождений»

Реферат

По курсу «Нефтегазопромысловое оборудование»

«Устройство и принцип действия струйных насосов»

Работу выполнил

студент НФ группы О-090600-41 ________________ Клименко А.С.

Работу проверил

Проверил ________________Евстифеев В.Г

Ижевск 2011.

Содержание

  1. Введение 3

  2. Устройство и принцип действия струйных насосов 4

  3. Скважинный струйный насос 8

  4. Технические характеристики скважинного струйного насоса 9

  5. Эксплуатация скважин установками струйных насосов 10

  6. Заключение 19

  7. Список использованной литературы 21

Введение

Струйные насосы (гидроэлеваторы или эжекторы) относятся к группе насосов-аппаратов, т. е. насосов, не имеющих движущихся частей. Они действуют по принципу передачи кинетической энергии от потока рабочей жидкости к потоку перекачиваемой жидкости, при этом передача энергии от одного потока к другому происходит непосредственно без промежуточных механизмов. Пожалуй, среди всех гидравлических машин струйные насосы можно назвать самыми простыми по конструктивному исполнению. Они не имеют движущихся деталей, которые подвержены износу, просты в эксплуатации и ремонте. Струйные насосы относят к классу гидравлических аппаратов.

Устройство и принцип действия струйных насосов

Упрощенно схему работы струйного насоса можно объяснить так.

Жидкость, пар, или газ под большим давлением подается по трубе, имеющей сопло, в подводящую камеру. Из-за сужения сопла жидкость обладает большей скоростью, следовательно, и кинетической энергией. В подводящей камере давление падает ниже атмосферного, и из питающего трубопровода, соединенного с этой камерой, происходит всасывание. Обе жидкости попадают в следующую камеру, где смешиваются и обмениваются кинетической энергией. Затем перемешавшееся вещество попадает в диффузор насоса, где теряет часть давления, а оттуда - в напорный трубопровод или сборный резервуар.

В зависимости от назначения рабочая и перекачиваемая среда может быть одной и той же (например, в водоструйных насосах), или различной. Струйные насосы относят к т.н. "динамическим насосам". Главным недостатком таких насосов является низкий коэффициент полезного действия - до 30%.

Примечателен тот факт, что до применения электродвигателей в качестве источника механической энергии, т.е. вплоть до 19-го века, струйные насосы широко применялись как генераторы гидравлической энергии.

Струйные насосы почти никогда не соединяют параллельно - чаще последовательно. Выпускаются насосы с изменяемым соплом, что позволяет изменять характеристики в заданных заводом-изготовителем пределах. Иногда струйные аппараты применяют как вспомогательное оборудование для откачки воздуха в центробежных насосах перед их пуском.

Одним из параметров, характеризующим струйные насосы, является коэффициент подсоса, или безразмерный расход. Определяется он как отношение расхода перекачиваемой жидкости к расходу рабочей. Несмотря на кажущуюся простоту и низкий КПД, струйные насосы незаменимы во многих случаях, например, когда необходимо произвести откачку жидкости из каких-либо резервуаров, а применить насосы другой конструкции не представляется возможным. Широкое применение струйные аппараты получили в пищевой промышленности, где одновременно с функцией перекачивания жидкостей ими выполняется функция смешения различных сред. Струйные насосы легко монтируются в систему трубопроводов, они малогабаритны и иногда используются на стороне высокого давления как дополнительные насосы.

Струйный насос состоит из четырех основных узлов: сопла, всасывающей камеры, камеры смешения и диффузора. Рабочая жидкость под давлением подается в сопло (суживающую насадку) и оттуда в смесительную камеру.

Согласно уравнению Д. Берлулли, для идеальной жидкости

H = p/pg+v2/2g= const,

т. е. сумма удельной потенциальной и кинетической энергий потока во всех его сечениях постоянна. В сопле жидкость приобретает большую скорость, кинетическая энергия ее возрастает, а потенциальная, следовательно, уменьшается. При этом давление снижается и при определенной скорости становится меньше атмосферного, т. е. во всасывающей камере возникает вакуум. Под действием вакуума вода из приемного резервуара по всасывающей трубе поступает во всасывающую камеру и далее в камеру смешения. В камере смешения происходит перемешивание потока рабочей и засасываемой жидкости, при этом рабочая жидкость отдает часть энергии жидкости, поступившей из приемного резервуара.

Пройдя камеру смешения, поток поступает в диффузор, где его скорость постепенно уменьшается, а статический напор увеличивается. Далее по напорному трубопроводу жидкость с расходом Qo + Qi попадает в сборный резервуар. Пренебрегая потерями напора на трение и преодоление местных сопротивлений, можно определить мощность, затраченную на перекачивание жидкости,

N3 = 9,8lQ1H1pg

и полезную мощность

Nп= 9,81QHpg.

Тогда КПД струйного насоса

η= QH/Q1H1,

где Qo — подача водоструйного насоса, л/с; Н — высота подъема перекачиваемой жидкости, м; Q1— расход рабочей жидкости, л/с; Н1 — рабочий напор, м.

Отношение расхода перекачиваемой жидкости к расходу рабочей называют коэффициентом инжекции (подмешивания):

a = Qa/Q1,

а отношение высоты подъема жидкости к рабочему напору — коэффициентом напора

β= H/H1.

Сопоставляя выражения, можно написать, что КПД струйных насосов

η = аβ

В зависимости от значения коэффициентов подмешивания и напора значения КПД струйных насосов лежат в пределах 0,15 — 0,25.

Расчет струйных насосов при заданных Q0 и Q1 H и H1 сводится к нахождению оптимального диаметра отверстия сопла, диаметра и длины камеры смешения, а также размеров диффузора.

Существует несколько методов расчета струйных насосов, которые освещены в специальной литературе. Приближенно расход рабочей жидкости, который необходимо подать к соплу струйного насоса, можно определить по формуле

труйные насосы используются для подъема воды из артезианских скважин, для водоотлива и водопонижения при производстве строительных работ, для подмешивания горячей воды в системах отопления. На канализационных сооружениях их используют, например, для удаления осадка из песколовок и перемешивания ила в метантенках. Струйные насосы можно применять также для откачивания воздуха из центробежных насосов перед их пуском.

На рис. 4.6 показаны схемы чугунного струйного насоса (гидроэлеватора) типа ВСН-50 с подачей 14—17 л/с и сварного гидроэлеватора конструкции Союзводоканалпроекта с подачей 15—30 л/с при высоте подъема жидкости от 4 до 20 м. Конструкции струйных насосов, применяемых для подъема воды из скважин и колодцев, будут приведены далее.

Достоинствами струйных насосов являются простота конструкции, надежность в работе, небольшие габаритные размеры и невысокая стоимость. К недостаткам можно отнести низкий КПД и необходимость подачи к соплу относительно больших расходов жидкости под высоким давлением.

Скважинный струйный насос

Схема работы и принцип действия струйного насоса

В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях.

Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.

Струйные насосы являются разновидностью гидроприводных насосов, и они обладают всеми достоинствами этого вида оборудования.

Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностъю, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.

К преимуществам струйных насосов относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.

В струйном насосе или инжекторе (рис. 1) поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины.

Рис. 1. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 — подвод рабочей жидкости; 3 — входное кольцевое сопло; 4 — рабочее сопло; 5 — камера смешения; 6 — диффузор; I — невозмущенная откачиваемая жидкость; II — пограничный слой; III — невозмущенная рабочая жидкость (ядро)

Нагнетание скважинной жидкости осуществляется благодаря явлению эжекции в рабочей камере, т.е. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией, см. рис. 1

Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В-В) и на выходе из него (сечение С-С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С-С) и перед ним (сечение А-А); расход рабочей жидкости Q1; полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к затраченной и может достигать величины КПД = 0,2...0,35:

Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом сопле и диффузоре).

Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1, из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью Vо и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости - постоянно уменьшаются и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкости уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяют цилиндрические камеры смешения, технологические простые в изготовлении и обеспечивающие относительно высокий КПД.

Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.

Технические характеристики скважинного струйного насоса

Струйный насос имеет два основных элемента: сопло и диффузор, состоящий иногда из нескольких деталей (см. рис. 1). К соплу подается рабочая жидкость под большим давлением. Она выходит из сопла в камеру смешения со значительной кинетической энергией. Откачиваемая жидкость поступает в ту же камеру и увлекается струей рабочей жидкости в горловину диффузора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]