Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Модификация_МЕТОДЫ ИССЛЕДОВАНИЯ.docx
Скачиваний:
13
Добавлен:
25.12.2018
Размер:
334.45 Кб
Скачать

Инфракрасная спектроскопия

В инфракрасной (ИК) спектроскопии изучают спектры поглощения веществ в области 5000-650 см-1, в которой находятся полосы, наиболее характерные для молекулярных структур. Поэтому ИК спектроскопия (ИКС) является универсальным методом изучения строения молекул.

В ИК-области кинетическими единицами, взаимодействующими с излучением, являются группы из двух-трех атомов, причем обмен энергией происходит только в том случае, если он сопровождается изменением дипольного момента поглощающей группировки за счет увеличения ее амплитуды колебаний. Какие колебания вырождены, а какие активны - определяется симметрией строения молекулы.

Если колебание в молекуле происходит в направлении валентной связи, соединяющей атомы, то оно называется валентным. Несмотря на то, что в колебании всегда участвует вся молекула, часто оно бывает локализовано в отдельных ее частях (группах атомов) и мало подвержено влиянию остальных атомов молекулы; такое колебание называют характеристическим. Существование характеристических колебаний является основой ИКС и позволяет определять наличие и концентрацию функциональных групп в больших многоатомных молекулах по их характеристическим полосам поглощения. Кроме того, в ИК спектрах встречаются полосы небольшой интенсивности, представляющие собой комбинации основных колебаний.

Для качественного анализа ИК-спектр образца записывают обычно в интервале 700-4000 см-1, хотя современные приборы позволяют это делать в более широком интервале волновых чисел. Это объясняется тем, что информация, полученная в указанной области спектра, вполне достаточна для качественного анализа, и в большинстве атласов приводятся ИК спектры только в этом интервале.

ИКС является одним из самых распространенных методов структурного анализа и идентификации органических соединений. Он применим для анализа разнообразных объектов. Так как практически любой образец может быть препарирован в виде, пригодном для получения его ИК спектра, при этом не требуется перестройки аппаратуры в зависимости от физической или химической природы вещества. Если в образце содержатся соединения, не обладающие высокой поглощающей способностью и слабо рассеивающие излучение, в количестве до 5-10 %, то они не искажают основные полосы поглощения спектра полимера.

Приготовление образцов каучуков для получения спектров производится различными методами в зависимости от свойств полимера и целей исследования.

Растворы каучуков. В большинстве случаев полосы поглощения в спектре раствора узкие и хорошо разрешаются. Использование растворов малой концентрации (0,04-0,05 г/мл) позволяет применить закон Бугера-Ламберта-Беера. Выбор растворителя определяется областью ИК-спектра, в которой ведется измерение: в исследуемой об­ласти спектр растворителя не должен содержать полос поглощения. В качестве растворителей для каучуков наиболее часто применяют четыреххлористый углерод, сероуглерод, хлороформ. При анализе используют разборные и неразборные кюветы разной толщины, чаще 0,4-0,5 мм.

Пленки, полученные из раствора. Если каучук хорошо растворяется в бензоле, бензине или другом летучем растворителе, то из него приготовляют раствор концентрации 1,5-2 % мас. Полученный раствор по каплям с помощью пипетки наносят на прозрачную для ИК лучей пластинку (NaCl или КВг). Испарение растворителя лучше проводить медленно, для чего пластинку с нанесенным на нее раствором помещают под стеклянный стаканчик, пленку сушат до полного удаления растворителя.

Пленки можно также получать, заливая раствор каучука в стеклянный каркас, плавающий на воде или чистой ртути. Концентрация раствора в этом случае должна быть меньше, чем для пластинок. Преимуществом такого способа, несмотря на его большую сложность, является то, что пленка получается двусторонней. Это может иметь значение при необходимости обработки пленки бромом, хлором или другими реагентами. Подобным же образом может быть приготовлена пленка из резиновой смеси. Следует учитывать, что ингредиенты, в первую очередь технический углерод, сильно увеличивают рассеяние, приводящее к потере прозрачности образца. Сера в количестве до 10- 15 % в сырой смеси позволяет получать образцы, достаточно прозрач­ные для качественного анализа. Увеличить прозрачность образца можно за счет изменения скорости испарения растворителя, что влия­ет на размер кристаллов серы.

Пленки, полученные расплющиванием. Образец каучука (2-3 г) расплющивают между целлофановыми пленками в прессе с подогревом или без него. При исследовании резин в пресс закладывается 2-3 г сырой резиновой смеси, которая расплющивается и вулканизуется. Для получения спектра полученную пленку можно или непосредст­венно положить на прозрачную для ИК-лучей пластинку, или предварительно растянуть ее для уменьшения толщины. На одной и той же пленке можно проводить исследование процессов, протекающих в каучуке при окислении, вулканизации и других химических превращениях на разных их стадиях. Толщину пленок выбирают такой, что бы пропускание в максимуме исследуемой полосы поглощения составляло 25-65 %, когда относительная ошибка минимальна.

Для приготовления образца каучука, нерастворимого, но хорошо набухающего в том или ином растворителе, можно применить метод расплющивания набухшего образца между пластинками, прозрачными в ИК области. Растворитель, в котором производится набухание, либо полностью испаряется, либо его поглощение компенсируется поглощением растворителя в кювете сравнения. Набуханию под­вергают либо мелкую крошку каучука, либо тонкий срез, полученный на микротоме. В последнем случае кусочек каучука замораживают, поливая его жидким азотом. Размер полученного среза должен быть не меньше размера изображения источника света на образце в спектрометре. Если не удается получить срез достаточно большой площади, удобно применить микроскоп-приставку - совокупность двух оптических систем, смонтированных в одном корпусе. Каждая система (одна - для образца, другая - для сравнения) состоит из двух объективов, расположенных один под другим и способных к независимому перемещению для фокусировки. Один из объективов дает уменьшен­ное изображение источника света, одновременно фокусируя его на образец. После прохождения образца изображение увеличивается до первоначальной величины и направляется на входную щель.

Микросрезы каучуков и микроскоп-приставка используются при работе с нерастворимыми каучуками и вулканизатами, при анализе волокон и микроколичеств веществ.

Таблетки, полученные прессованием с бромистым калием, широко применяются для анализа порошкообразных и твердых веществ, нерастворимых полимеров и вулканизатов. Навеску вещества смешивают с навеской бромистого калия в вибромельнице или растирают в ступке; в зависимости от эластичности каучука эта процедура занимает 3-4 часа. Для лучшего смешения каучук можно смачивать небольшими количествами легколетучего растворителя. В качестве основы таблеток могут применяться KBr, КС1, NaCl и другие калиевые или натриевые соли галогенов, наиболее распространен бромистый калий. Прессование производят под давлением 700-1000 МПа, лучше в вакууме, время прессования составляет до 30-40 минут. Таб­летка обычно имеет форму диска или небольшой пластинки. Преимуществами метода являются отсутствие поглощения средой (основой таблетки), малые количества вещества, необходимого для анализа, простота определения толщины таблетки и концентрации вещества. При исследовании каучуков содержание его в общей массе таблетки составляет 0,3-0,5 %, при содержании каучука 1 % таблетка малопрозрачна. Однако эта методика применима только в случае отсутствия взаимодействия исследуемого вещества с бромистым калием.

Образцы, полученные из расплава и путем кристаллизации ингредиентов. Образец полимера может быть приготовлен из расплава с последующим охлаждением. Кристаллизующиеся вещества (ингредиенты резиновых смесей) растворяют, и затем раствор наливают на прозрачную для ИК-света пластинку. Меняя скорость испарения, можно регулировать размер кристаллов и этим добиваться получения прозрачного образца.

Возможности количественного и качественного анализа значительно расширяются при использовании приспособлений для записи микроколичеств веществ, устройств для сбора в кювету спектрометра хроматографических фракций.

Для достижения наибольшей точности и чувствительности применяют новое поколение техники: ИК-спектрометры с преобразованием Фурье, снабженные приставками, позволяющими получать спектры отражения, проводить пиролиз эластомеров и т.д. При проведении преобразования Фурье оказалось возможным коренным образом изменить конструкцию спектрометра, резко повысить чувстви­тельность и информативность метода.