Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-19.docx
Скачиваний:
68
Добавлен:
15.04.2019
Размер:
3.01 Mб
Скачать

7. Теплообменники на термосифонах.

Термосифоны - это наиболее экономичное решение для затопленных испарителей, поскольку исключает затраты на насос и его эксплуатацию. Однако коэффициент циркуляции в большой степени зависит от теплопереноса и падения давления в различных частях этой системы, которые, в свою очередь, зависят от циркуляции, т. е. наблюдается взаимодействие и взаимозависимость между падением давления, скоростью циркуляции и теплопередачей в системе циркуляции.

По определению термосифон подразумевает циркуляцию под действием различия плотности хладагента в двух ветвях контура испаритель — сепаратор, горячей и холодной. Предположим, что агрегат, представленный на рис. 03, не работает, но заполнен хладагентом. Оба клапана открыты. Уровень хладагента в отделителе жидкости такой же, как в испарителе. Когда в испаритель с другой стороны подается охлаждаемая среда, хладагент разогревается, постепенно начинается кипение и каналы частично заполняются поднимающимися вверх пузырьками. Таким образом, средняя плотность в ветви, представленной испарителем, оказывается значительно меньшей, чем в ветви, образованной отделителем жидкости и нисходящей трубой.

Следовательно, эти две ветви не сбалансированы и хладагент постепенно начинает поступать в испаритель из отделителя жидкости по нисходящей трубе. В верхней части испарителя двухфазная смесь выдавливается в отделитель жидкости, в котором жидкость и пар разделяются. В нижней части испарителя поступающий хладагент разогревается и затем начинает кипеть. Таким образом, двухфазная смесь постоянно находится в каналах теплообменника.

По мере увеличения скорости циркуляции увеличивается перепад давлений в трубах и аппаратах контура, и, наконец, этот перепад давлений уравновешивает движущую силу (см. рис. 03). Система приходит в стационарное состояние, расход хладагента через испаритель и доля испаренного хладагента постоянны. В отделитель жидкости поступает насыщенная парожидкостная смесь. Здесь жидкость отделяется, и хладагент вновь поступает в испаритель, но теперь уже не в насыщенном состоянии. Температура здесь такая же, как в отделителе жидкости, но давление выше на величину гидростатического напора между уровнем жидкости в сепараторе и входом в испаритель, т. е. хладагент переохлажден.

Это означает, что в первой части теплообменника происходит лишь повышение температуры, но не кипение. Однако по мере продвижения хладагента вверх давление снижается, что вызывает уменьшение переохлаждения. Эти два эффекта (повышение температуры и снижение давления) приводят к тому, что через некоторое время хладагент достигает точки кипения и закипает, хотя и при более высокой температуре, чем на выходе. Давление продолжает падать из-за изменения высоты и гидравлического сопротивления, и хладагент, теперь в насыщенном состоянии, продолжает подниматься при уменьшении температуры и вновь поступает в отделитель жидкости.

На рис. 03 Б показано изменение температуры от входа до выхода испарителя. Обратите внимание на небольшое падение температуры хладагента, которое объясняется падением давления в выходном трубопроводе. Это падение температуры не связано с переносом теплоты, а обусловлено адиабатическим (т. е. без теплообмена с окружающей средой) расширением двухфазного хладагента. По причине этого падения температуры температура на выходе теплообменника несколько выше, чем на входе. В аммиачных системах в нижней точке данного контура происходит слив масла.

8. Изображения на I-d диаграмме основных процессов измерения тепловлажностного состояния в воздухе.

В системах вентиляции рабочим телом является влажный воздух. Влажным воздухом называется парогазовая смесь, состоящая из сухого воздуха и водяных паров.

Основными характеристиками влажного воздуха являются:

1) абсолютная влажность D , г/м3, – масса водяного пара, содержащегося в 1 м3 влажного воздуха;

2) относительная влажность j, %,– отношение действительной абсолютной влажности к максимально возможной влажности в насыщенном воздухе при той же температуре;

3) влагосодержание воздуха d , г/кг, – масса водяного пара, находящегося во влажном воздухе, сухая часть которого весит 1 кг.

4) энтальпия I , кДж/кг, – количество теплоты, содержащейся во влажном воздухе и отнесенной к 1 кг заключенного в нем сухого воздуха.

При обработке воздуха в вентиляционных установках изменяется его тепловлажностное состояние. Вопросы, относящиеся к влажному воздуху,

удобно и легко решаются с помощью I-d диаграммы (рис. 4.1). Она была предложена в 1918 г профессором Л.К. Рамзиным. В I-d диаграмме графи-

чески связаны все параметры, определяющие тепловлажностное состояние воздуха: энтальпия I, влагосодержание d, температура t, относительная

влажность j и парциальное давление п.н р .

Рис. I-d диаграмма влажного воздуха

I-d диаграмма построена в косоугольной системе координат. По оси ординат отложены значения энтальпий I, кДж/кг, по оси абсцисс, направленной под углом 150° к оси I, – значения влагосодержаний d, г/кг. Поле диаграммы разбито линиями постоянных энтальпий I = const и влагосодержаний d = const. На диаграмму нанесены также линии постоянных температур t = const. Все поле диаграммы линией j = 100 % разделено на две части. Выше этой линии расположена область ненасыщенного влажного воздуха. Линия j = 100 % соответствует состоянию воздуха, насыщенного водяными парами. Ниже этой линии расположена область перенасыщенного состояния воздуха (метастабильное состояние или состояние тумана).

Каждая точка на поле диаграммы соответствует определенному тепловлажностному состоянию воздуха. Положение точки определяется любыми двумя из пяти (I, d, t, j, п р ) параметрами состояния. Остальные три параметра могут быть определены по I-d диаграмме как производные.

Кроме основных параметров воздуха, которые использовались при построении, с помощью I-d диаграммы можно найти еще два параметра, которые широко используются в расчетах вентиляции и кондиционирования воздуха, а также техники строительства: температуру точки росы р t и температуру мокрого термометра м t .

Температура точки росы р t , °С, – температура, до которой нужно охладить ненасыщенный воздух, чтобы он стал насыщенным при сохранении постоянного влагосодержания.

Температура мокрого термометра м t , °С, – температура, которую принимает воздух при достижении насыщенного состояния и сохранении постоянной энтальпии воздуха, равной начальной.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]