Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы по механике.doc
Скачиваний:
51
Добавлен:
17.04.2019
Размер:
560.13 Кб
Скачать
  1. Линейное перемещение, линейная скорость, линейное ускорение.

Перемеще́ние (в кинематике) — изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка — это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки: .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Векторr = r r0, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |r| равен пройденному пути s. Линейная скорость тела в механике

Скорость

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени t точка пройдет путь s и получит элементарное (бесконечно малое) перемещение r.

Вектором средней скорости <v> называется отношение приращения r радиу­са-вектора точки к промежутку времени t:

(2.1)

Направление вектора средней скорости совпадает с направлением r. При неог­раниченном уменьшении t средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения t путь s все больше будет приближаться к |r|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

(2.2)

При неравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной v — средней скоро­стью неравномерного движения:

Из рис. 3 вытекает, что v> |v|, так как s > |r|, и только в случае прямолиней­ного движения

Если выражение ds = vdt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + t, то найдем длину пути, пройденного точкой за время t:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом