Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вторые вопросы.docx
Скачиваний:
9
Добавлен:
18.04.2019
Размер:
192.58 Кб
Скачать

33 Билет. Радиоактивность и закон радиоактивного распада.Изотопы.Технологии утилизации радиоактивных отходов и материалов.

Радиоактивность (от лат. radio — «излучаю», radius — «луч» и activus — «действенный»), радиоактивный распа́д — явление спонтанного превращения атомного ядра в другое ядро или ядра. Радиоактивный распад сопровождается испусканием одной или нескольких частиц (например, электронов, нейтрино, альфа-частиц, фотонов). Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

Радиоактивность – явление, присущее большей части нуклидов (ядер), суть которого состоит в том, что ядро распадается, испуская какую-либо частицу. Ядра характеризуются периодом полураспада – N=N0e-lt, где l – постоянная радиоактивного распада. Т.е. это самопроизвольное превращение неустойчивого изотопа одного элемента в изотоп другого, при этом происходит испускание электронов, протонов, нейтронов или ядер гелия (альфачастиц). Изотопы – разновидности одного химич. элемента, занимающие одно и то же место в периодич. системе элементов Д. И. Менделеева, т. е. имеющие одинаковый заряд ядра, но отличающиеся массами атомов. Ядра всех И. данного элемента содержат одинаковое кол-во протонов, но различное число нейтронов. И. химич. элемента обозначаются символом соответствующего элемента, снабжённым с левой стороны двумя индексами, где верхний означает число нейтронов, нижний — число протонов, а с правой стороны — верхним индексом, означающим массовое число элемента, напр. 66С1298C17,1715P32. Чаще массовое число приводится сверху слева от химич, элемента: 12С, 32Р.

Закон радиоактивного распада.

Радиоактивность(Р)-это самопроизвольное испускание ядрами нек-х эл-в разразличных частиц(альфа-ч-ц, электронов и др-е), сопровождающееся переходом ядра в др-е состояние и измен-е его параметров. Активность-число распадов в единицу времени. Виды РИ:1.Альфа-распад-изл-ние α-частиц высокой энергии(ядер гелия). Масса ядра уменьш-ся на 4 единицы, а заряд (№эл-та в таблице Менделеева) –на 2 ед-ы.

2.β-распад-самопроизвольное превращение нейтрона с протоном с испусканием электрона и антинейтрино:n-p+e+v.

Массовое число не изменяется, а заряд возрастает на единицу. Различают 3 вида β-распада:1. Один из нейтронов в ядре превращается в протон, при этом излуч-ся электрон и антинейтрон. 2. протон, входящий в состав ядра, распадается на нейтрон, позитрон и элект-е нейтрино с образованием ядра А(z-1;n+1).. 3. Ядро может захватить ближайший из атомных электронов и превратиться в другое ядро с зарядом на 1 меньше; β-ч-ца(электрон или позитрон) при этом не изл-ся.

  1. γ-изл-ние-испускание возбужденным ядром квантов света высокой частоты. Параметры ядра не изменяется, ядро переходит в состояние с меньшей энергией. Закон радиоа-го распада Nt=Noe , где лямбда –постоян-я радиоа-го распада; Nt-число нераспавшихсяядер в момент времени t; No-начальное число нераспавшихся ядер t=0. Период полураспада –время, через к-е распадается половина ядер.

Радиоактивные отходы (РАО) — отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности.

На сегодняшний день существует три класса подобных отходов – низкоактивные, среднеактивные и высокоактивные. Наиболее простой является утилизация первых двух классов. Стоит отметить, что в зависимости от своего химического состава радиоактивные отходы делятся на короткоживущие (с малым периодом полураспада) и долгоживущие (с большим периодом полураспада). В первом случае самым простым способом будет временное хранение радиоактивных материалов на специальных площадках в герметических контейнерах. После определенного промежутка времени, когда происходит распад опасных веществ, оставшиеся материалы уже не представляют опасности и могут быть утилизированы как обычный мусор. Именно так поступают с большей частью технических и медицинских источников радиоактивного излучения, которые содержат только короткоживущие изотопы с периодом полураспада максимум несколько лет. В качестве контейнеров для временного хранения в этом случае обычно используют стандартные металлические бочки объемом 200 литров. При этом низко и среднеактивные отходы заливают цементом или битумом для предотвращения их попадания за пределы емкости.

Процедура утилизации отходов атомных электростанций гораздо более сложная и требует повышенного внимания. Поэтому такая процедура производится только на специальных заводах, которых сегодня в мире совсем немного. Здесь при помощи специальных технологий химической обработки производится извлечение большей части радиоактивных веществ для их повторного применения. Наиболее современные способы с использованием ионообменных мембран позволяют вновь использовать до 95% всех радиоактивных материалов. При этом радиоактивные отходы значительно уменьшаются в объеме. Однако, полностью их дезактивировать пока невозможно. Вот почему на следующей стадии утилизации производится подготовка отходов к длительному хранению. А учитывая, что отходы АЭС имеют длительный период полураспада, практически такое хранение можно назвать вечным.

Для того, что бы полностью исключить попадание высокоактивных отходов в окружающую среду, их подвергают процедуре витрификации или остеклования. Она заключается в смешивании расплавленных в индукционной печи радиоактивных материалов с жидким стеклом до получения однородной массы. Эта масса заливается в толстостенные контейнеры из легированной стали, где она затвердевает, образуя чрезвычайно устойчивый к действию воды и других химикатов состав. После герметизации контейнеров радиоактивные отходы считаются полностью подготовленными для захоронения.

Для такого захоронения используются подземные хранилища, глубиной несколько сотен метров. Они устраиваются в скальных породах (обычно гранитах) и оснащаются системой контроля за состоянием внутри контейнеров, а также вентиляцией. Такой контроль продолжается и после их заполнения, когда полностью использованное хранилище заливается бетоном и консервируется практически навсегда.