Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
векторный анал.doc
Скачиваний:
1
Добавлен:
22.04.2019
Размер:
137.73 Кб
Скачать

12. Производная по направлению

В математическом анализе, производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию от n аргументов в окрестности точки Для любого единичного вектора определим производную функции f в точке X0 по направлению e следующим образом

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора e. Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

13. Градиент скалярного поля

Пусть задано скалярное поле U = f(x, y, z). Градиентом скалярного поля U = f(x, y, z) в точке M(x, y, z) называют вектор

Если функция U = f(x, y, z) имеет частные производные U'x, U'y, U'z в каждой точке некоторой области, то скалярное поле порождает в этой области векторное поле

Обозначает направление наибольшего возрастания функции.

14. Оператор Гамильтона (набла-оператор). Правила работы с ним

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом Для трёхмерного евклидова пространства в прямоугольных декартовых координатах оператор набла определяется следующим образом:

Через оператор набла естественным способом выражаются основные операции векторного анализа: grad (градиент), div (дивергенция), rot (ротор), а также оператор Лапласа

15. Векторные поля. Векторные линии. Поток векторного поля

Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например вектор скорости ветра в данный момент времени изменяется от точки к точке и может быть описан векторным полем. Для евклидова пространства векторное поле, заданное на евклидовом пространстве, соответствует полю направлений, где каждой точке пространства сопоставляется некоторая прямая, проходящая через данную точку. Точка пространства, в которой векторное поле равно нулю, называется особой точкой векторного поля, в ней направление не определено.

Циркуляция — интеграл по замкнутому контуру:

Поток векторного поля через поверхность S определяется как интеграл по S:

где Fn — проекция вектора поля на нормаль к поверхности, dS — «векторный элемент поверхности», определяемый, как вектор единичной нормали, умноженный на dS. Простейшим примером этой конструкции является объём жидкости, проходящий через поверхность S, при её течении со скоростью F.

Векторное поле, дивергенция которого всюду равна нулю, называется соленоидальным; оно может быть представлено как ротор некоторого другого векторного поля.

Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым); оно может быть представлено как градиент некоторого скалярного поля (потенциала).