Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
YeNOIT_Pervye_voprosy.doc
Скачиваний:
1
Добавлен:
24.04.2019
Размер:
363.01 Кб
Скачать

27 Энергетическое машиностроение. Станкостроение. Робототехника.

Энергетическое машиностроение - отрасль машиностроения, производящая первичные двигатели и связанные с ними аппараты и устройства для выработки различных энергоносителей (водяного пара, газа и др.), являющихся рабочими телами тепловых двигателей. Основная продукция Э. м.: паровые, гидравлические и газовые турбины, оборудование для атомных и геотермальных электростанций, парогазотурбинные установки, двигатели внутреннего сгорания (кроме автомобильных, самолетных, тракторных, локомотивных, которые выпускаются соответствующими отраслями промышленности), локомобили, газотурбинные компрессоры и нагнетатели, парогенераторы, паровые котлы, оборудование промышленной и коммунальной энергетики, тягодутьевые машины и др. Э. м. также производит автоматические устройства, регулирующие процессы горения топлива и питание котлов, подачу газа в газовые турбины, давление в паровых магистралях, температуру перегретого пара, число оборотов турбоагрегатов и т. п.

Экономическое значение Э. м. характеризуется его ролью в создании технической основы энергетики. С точки зрения конструктивных особенностей энергооборудования Э. м. состоит из производства машин и теплообменной аппаратуры. Производство машин, в свою очередь, подразделяется на изготовление двигателей лопаточного (паровые, гидравлические и газовые турбины) и поршневого типа (двигатели внутреннего сгорания, локомобили).

Промышленное производство энергетического оборудования отдельных видов возникло в конце 18 в. Паровые машины и котлы выпускались с 1780-х гг. в Великобритании, гидротурбины — с 1830-х гг. во Франции, двигатели внутреннего сгорания — с 1880-х гг. во Франции, Германии, паровые турбины — с конца 19 — начала 20 вв. в Великобритании.

Станкостроение - ведущая отрасль машиностроения, создающая для всех отраслей народного хозяйства металлообрабатывающие и деревообрабатывающие станки, автоматические и полуавтоматические линии, комплексно-автоматического производства для изготовления машин, оборудования и изделий из металла и др. конструкционных материалов, кузнечно-прессовое, литейное и деревообрабатывающее оборудование.

Появление металлорежущих станков связано с развитием крупного капиталистического производства, с организацией первых промышленных предприятий заводского типа. Широкое распространение машин-орудий, а затем и паровых машин требовало повышения точности обработки деталей. Эта задача могла быть решена только с изобретением машин для производства машин и в первую очередь металлорежущих станков с механическим суппортом. Создание механического суппорта относится к началу 18 в. Русский механик А. К. Нартов в 1738 построил первый в мире станок с механическим суппортом и набором сменных зубчатых колёс. Нартов и др. русские мастера (М. Сидоров-Красильников, С. Шелашников, Я. Батищев) сконструировали в 18 в. ряд металлорежущих станков (станки для сверления стволов пушек, различные агрегатные станки). Однако изобретения рус. мастеров не могли получить широкого применения и известности, т.к. потребность феодально-крепостнической России в небольшом количестве машин (главным образом для изготовления вооружения) обеспечивалась отдельными небольшими заводами.

Робототехника — прикладная наука и отрасль деятельности,занимающаяся разработкой автоматизированных технических систем.

Робототехника опирается на такие дисциплины как электроника, механика, программирование. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

1920г –термин «робот»

Виды робототехники.По отраслям:

  • промышленная

  • бытовая

Компоненты роботов:

  1. приводы-мышцы роботов

  2. элементная база и прпрограмное обеспечение

  3. источники энергии

3 закона робототехники:

  1. Робот не может причинить вред человеку

  2. Он должен подчиняться воле человека,если команды человека не противоречат пункту 1

  3. Робот должен заботиться о своей безопасности,пока это не противоречит 1 и 2 пункту.

Робот-автоматический манипулятор с программным управлением.

По типу управления робототехнические системы подразделяются на:

Биотехнические:

• командные (кнопочное и рычажное управление отдельными звеньями робота);

копирующие (повтор движения человека, возможна реализация обратной связи, передающей прилагаемое усилие, экзоскелеты);

• полуавтоматические (управление одним командным органом, например, рукояткой всей кинематической схемой робота);

Автоматические:

• программные (функционируют по заранее заданной программе, в основном предназначены для решения однообразных задач в неизменных условиях окружения);

• адаптивные (решают типовые задачи, но адаптируются под условия функционирования);

• интеллектуальные (наиболее развитые автоматические системы);

В развитии методов управления роботами огромное значение имеет развитие технической кибернетики и теории автоматического управления.

Первое поколение роботов:имеют жёсткую программу действий и характеризуются наличием элементов обратной связи с окружающ средой-ограничения в их применении.

Второе поколение: обладают координированными движениями с восприятием.Пригодны для для малоквалиф труда при изготовл изделий.Работа таких роботов требует управления ЭВМ.Неотъемлимая часть такого робота-алгоритмическое и программное обеспечение.

Третье поколение: роботы с искусственным интеллектом.Заменяют человека в квалифиц труде.обучаемы.понимают язык и ведут диалог.распознают и анализируют степень сложности ситуации,планируют поведение.

№28. Наночастицы Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства

Нанотехноло́гия — междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

Наномедицина — слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры

Наноматериалы — Материалы, созданные с использованием наночастиц и/или посредством нанотехнологий, обладающие какими-либо уникальными свойствами, обусловленными присутствием этих частиц в материале.

Биомолекулярная электроника (Нанобиоэлектроника) — раздел электроники и нанотехнологий, в которых используются биоматериалы и принципы переработки информации биологическими объектами в вычислительной технике для создания электронных устройств. В 1974 году А. Авирам и М. Ратнер предложили использовать отдельные молекулы в качестве элементарной базы электронных устройств. Затем М. Конрад предложил концепцию ферментативного нейрона, основанную на непрерывных распределенных средах, обрабатывающих информацию. Эти идеи дали начало квазибиологической парадигме, которая, базируясь на идеях нейронных сетей Мак Каллоха и Питтса, позволила практически реализовать молекулярные нейросетевые устройства, например, на основе белка бактериородопсина.Литография - способ печати, при котором краска под давлением переносится с плоской печатной формы на бумагу. В основе литографии лежит физико−химический принцип, подразумевающий получение оттиска с совершенно гладкой поверхности (камня), которая, благодаря соответствующей обработке, приобретает свойство на отдельных своих участках принимать специальную литографскую краску.

Нанолитография методом анодного оксидирования (НАО) применяется к многослойным структурам. К кантилеверу и одному из слоев прикладывается определенная разность потенциалов, которая инициирует химическую реакцию.. Примером НАО явлется нанолитография слоя титана на подложке из оксида кремния. В атмосферных условиях титан естественным образом окисляется, образуя сверхтонкий слой TiO2. На поверхности кантилевера и слоя оскида титана образуется слой абсорбированной воды. При приближении зонда образуется водяной мостик под действием капиллярных сил. При приложении соответствующей разности потенциалов в воде инициируется электрохимическая реакция. Окисел образовывается на поверхности титана под зондом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]