Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Информатику экзамен.docx
Скачиваний:
5
Добавлен:
25.04.2019
Размер:
138.91 Кб
Скачать

Билет 1

Условием жизнедеятельности любой системы является процесс преобразования информации. Строение и функционирование систем различной природы (биологических, социальных, технических) невозможно объяснить, не рассматривая общих закономерностей информационных процессов. В ХХ в. стала складываться информационная картина мира, которая рассматривает окружающий мир с информационной стороны и дополняет его вещественно - энергетическую картину. Человек получает информацию о мире с помощью органов чувств (зрения, слуха, обоняния, осязания, вкуса). Чтобы правильно ориентироваться, он запоминает полученные данные (хранит информацию). Для достижения каких-либо целей человек принимает решения (обрабатывает информацию), а в процессе общения с другими людьми - передает и принимает информацию. Сегодня значение информации в нашей жизни настолько велико, что настоящее время называют эрой информатики. Человечество стремительно создает новейшие средства сбора, накопления, хранения, поиска и передачи и обработки информации. Развивается информационная индустрия и новая научная дисциплина информатика – комплексная наука, изучающая свойства информации и информационные процессы в природе, технике и обществе, а также способы представления, накопления, обработки и передачи информации с помощью технических средств. Слово информатика происходит от французского слова Informatique, образованного в результате объединения терминов Information (информация) и Automation (автоматика), что выражает ее суть как науки об автоматической обработке информации. Кроме Франции термин информатика используется в ряде стран Восточной Европы и России. В Западной Европе и США используется другой термин - Computer Science (наука о средствах вычислительной техники). Современная информатика развивается по нескольким направлениям: - научное (исследования процессов получения, передачи, представления, хранения и обработки информации); - программное (разработка программных средств); - промышленное (производство технических средств информатики); - проектирование различных интерфейсов для взаимодействия человека с аппаратными и программными средствами; - социальное (решение социальных вопросов информатизации общества, в том числе компьютеризации обучения). В задачи информатики входит систематизация приемов и методов работы с аппаратными и программными средствами; проектирование новых информационных процессов; создание систем управления информационными процессами.

Билет 2

Постиндустриальное состояние человеческой цивилизации правомерно связывают с развитием информационного общества - общества, уровень которого в решающей степени определяется количеством и качеством накопленной информации, ее свободой и доступностью. Возникновение информационного общества неразрывно связано с осознанием фундаментальной роли информации в общественном развитии, рассмотрением в широком социокультурном контексте таких феноменов, как информационные ресурсы, новые информационные технологии, информатизация.

Становление информационного общества потребовало обеспечить адекватность образования динамичным изменениям, происходящим в природе и обществе, всей окружающей человека среде, возросшему объему информации, стремительному развитию новых информационных технологий. Особое значение в информационном обществе приобретает организация информационного образования и повышение информационной культуры личности.

Сегодня есть все основания говорить о формировании новой информационной культуры, которая может стать элементом общей культуры человечества. Ею станут знания об информационной среде, законах ее функционирования, умение ориентироваться в информационных потоках. Информационная культура пока еще является показателем не общей, а, скорее, профессиональной культуры, но со временем станет важным фактором развития каждой личности.

Понятие "информационная культура" характеризует одну из граней культуры, связанную с информационным аспектом жизни людей. Роль этого аспекта в информационном обществе постоянно возрастает; и сегодня совокупность информационных потоков вокруг каждого человека столь велика, разнообразна и разветвлена, что требует от него знания законов информационной среды и умения ориентироваться в информационных потоках. В противном случае он не сможет адаптироваться к жизни в новых условиях, в частности, к изменению социальных структур, следствием которого будет значительное увеличение числа работающих в сфере информационной деятельности и услуг. В настоящее время существует множество определений информационной культуры. Рассмотрим некоторые из них.

В широком смысле под информационной культурой понимают совокупность принципов и реальных механизмов, обеспечивающих позитивное взаимодействие этнических и национальных культур, их соединение в общий опыт человечества.

В узком смысле - оптимальные способы обращения со знаками, данными, информацией и представление их заинтересованному потребителю для решения теоретических и практических задач; механизмы совершенствования технических сред производства, хранения и передачи информации; развитие системы обучения, подготовки человека к эффективному использованию информационных средств и информации.

Один из ведущих отечественных специалистов в области информатизации Э.П. Семенюк под информационной культурой понимает информационную компоненту человеческой культуры в целом, объективно характеризующую уровень всех осуществляемых в обществе информационных процессов и существующих информационных отношений.

 

Билет 3

Информация (от лат. informatio — осведомление, разъяснение, изложение) — в широком смысле абстрактное понятие, имеющее множество значений, в зависимости от контекста. В узком смысле этого слова — сведения (сообщения, данные) независимо от формы их представления. В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. Информация — совокупность данных, зафиксированных на материальном носителе, сохранённых и распространённых во времени и пространстве.

Основные виды информации по ее форме представления, способам ее кодирования и хранения, что имеет наибольшее значение для информатики, это:

  • графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей на бумаге, холсте, мраморе и др. материалах, изображающих картины реального мира;

  • звуковая — мир вокруг нас полон звуков и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г. ее разновидностью является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение ее аналогично графической информации;

  • текстовая — способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

  • числовая — количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для ее отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

  • видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др.

Свойства информации:

  1. Объективность информации. Объективный – существующий вне и независимо от человеческого сознания. Информация – это отражение внешнего объективного мира. Информация объективна, если она не зависит от методов ее фиксации, чьего-либо мнения, суждения. Пример. Сообщение «На улице тепло» несет субъективную информацию, а сообщение «На улице 22°С» – объективную, но с точностью, зависящей от погрешности средства измерения. Объективную информацию можно получить с помощью исправных датчиков, измерительных приборов. Отражаясь в сознании человека, информация может искажаться (в большей или меньшей степени) в зависимости от мнения, суждения, опыта, знаний конкретного субъекта, и, таким образом, перестать быть объективной.

  2. Достоверность информации. Информация достоверна, если она отражает истинное положение дел. Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной. Достоверная информация помогает принять нам правильное решение. Недостоверной информация может быть по следующим причинам:

    • преднамеренное искажение (дезинформация) или непреднамеренное искажение субъективного свойства;

    • искажение в результате воздействия помех («испорченный телефон») и недостаточно точных средств ее фиксации.

  3. Полнота информации. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению.

  4. Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

  5. Актуальность информации – важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна.

  6. Полезность (ценность) информации. Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как один, количество возможных состояний перемножается, а количество информации — складывается. Не важно, идёт речь о случайных величинах в математике, регистрах цифровой памяти в технике или в квантовых системах в физике.

Чаще всего измерение информации касается объёма компьютерной памяти и объёма данных, передаваемых по цифровым каналам связи.

Объём информации можно представлять как логарифм[2] количества возможных состояний.

Наименьшее целое число, логарифм которого положителен — это 2. Соответствующая ему единица — бит — является основой исчисления информации в цифровой технике.

Билет 4

Материал для урока информатики в 8 классе

Двоичное кодирование

В какой бы форме не представлялась подлежащая обработке информация, она должна быть переведена компьютером на язык, доступный для автоматической обработки. Язык компьютера – это язык чисел, причем не обычных (десятичных), а двоичных, алфавит которых состоит всего лишь из двух цифр – 0 и

1. Двоичная система наиболее проста и удобна для обработки на ЭВМ, т. к. компьютер – электрическая машина и работает с электрическими сигналами: есть сигнал – включено, нет сигнала – выключено.

В современной вычислительной технике информация как раз и кодируется с помощью сиг-налов двух видов: включено или выключено. Все входные сигналы, поступающие в компьютер, преобразуются в нули и единицы, при этом 0 означает отсутствие тока (нет сигнала, т. е. выклю-чено), а 1 – присутствие тока в цепи (есть сигнал, т. е. включено). Принято обозначать одно со-стояние цифрой 0, а другое – цифрой 1. Такое кодирование называется двоичным, а цифры 0 и 1 называются битами (от англ. bit – binary digit – двоичная цифра). 

На этом простом принципе и основана работа ЭВМ. Любая информация в компьютере мо-жет быть представлена в виде последовательности двоичных символов – бит.

Представление текстовой информации

При двоичном кодировании текстовой информации каждому символу соответствует его код – последовательность из 8 нулей и единиц, называемая байтом. Всего существует 256 разных последовательностей из 8 нулей и единиц. Это позволяет закодировать 256 символов, например большие и малые буквы латинского и русского алфавитов, цифры, знаки препинания, специаль-ные символы, пробел и т. д.

Соответствие байтов и символов задается с помощью таблицы кодировки, в которой уста-навливается взаимосвязь между символами и их порядковыми номерами в компьютерном алфави-те. Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответ-ствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код есть порядковый но-мер символа в двоичной системе счисления.  Для разных типов ЭВМ используются различные таблицы кодировки. С распространением персональных компьютеров типа IBM PC международным стандартом стала таблица кодировки под названием ASCII (American Standard Code for Information Interchange) – Американский стан-дартный код для информационного обмена.

Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номе-рами от 0 (двоичный код 000000000) до 127 (двоичный код 01111111). Сюда входят буквы латин-ского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. остальные 128 кодов, начиная с 128 (двоичный код 10000000) и кончая 255 (двоичный код 11111111), использу-ются для кодировки букв национальных алфавитов, символов псевдографики и научных симво-лов. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита. 

Принцип последовательного кодирования алфавита: в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Данное правило соблюдается и других таблицах кодиров-ки (КОИ-8). Благодаря этому и в машинном представлении для символьной информации сохраня-ется понятие «алфавитный порядок». Из всего вышесказанного следует, что когда вы нажимаете клавишу с буквой L на клавиа-туре ПК, центральный процессор получает команды из восьми сигналов: выключить – включить – выключить – выключить – включить – включить – выключить – выключить. Если учесть чрезвы-чайно высокое быстродействие компьютера, то станет очевидным, что для отображения на экране буквы практически не требуется никакого времени. ASCII или UNICODE

Для кодирования необходимо описать базовые информационные объекты. Для этого необ-ходимо создать модель интересующей информации. 

В отношении текстовой информации решили отделить ее внешнее представление от со-держательного смысла. Это существенно облегчило задачу: осталось выписать все возможные знаки, которые могут быть использованы для написания любого текста, и поставить в соответст-вие каждому из них число. Таким образом, в качестве элементарного информационного объекта приняли текстовый знак.  В список используемых знаков включили все, что сумели найти на клавиатуре англоязыч-ной пишущей машинки- она оказалась лучшей моделью для законодателей компьютерной моды. Список лишь слегка расширили с учетом специфики компьютера.  Поскольку компьютер работает с числами в двоичной системе, которые традиционно груп-пируют по 8 разрядов, решили в получившейся таблице использовать сразу двоичные 8-разрядные числа. Часто такие таблицы состоят из 3-х колонок, чтобы можно было видеть сразу и двоичный код, и привычный 10-чный.  Текстовых знаков в таблице оказалось 128, а в 8-разрядное двочное число можно закоди-ровать 256 знаков. Это позволило учесть то, о чем не могли заранее подумать изобретатели коди-рования. Различные варианты заполнения свободной части таблицы привели к похожим, но не-сколько отличающимся стандартам. В настоящее время наиболее известный вариант такой табли-цы называется ASCII.  Той же частью таблицы смогли воспользоваться программисты других стран, которым невоз-можно было обойтись без английского алфавита, но и родной язык было бы странно не использо-вать. Поскольку такие модернизации таблицы никем жестко не контролировались, появилось не-сколько вариантов кодирования национальных языков. В частности, для русского языка сущест-вует несколько кодировок, которые использовались в различных операционных системах, напри-мер:  • 866 (в среде DOS)  • win-1251 (в среде Windows)  • mac-cyrilic (в среде Macintosh)  • koi-8r (в среде UNIX) 

Билет 5

Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления, числа записываются с помощью двух символов (0 и 1).

Преобразование двоичных чисел в десятичные

Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:

Восьмери́чная систе́ма счисле́ния — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Для перевода восьмеричного числа в двоичное необходимо заменить каждую цифру восьмеричного числа на триплет двоичных цифр. Например: 25418 = 010 101 100 001 = 0101011000012

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Перевод чисел из шестнадцатеричной системы в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316 = 3·160+10·161+5·162 = 3·1+10·16+5·256 = 3+160+1280 = 144310

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную нужно заменить каждую его цифру на соответствующую тетраду из нижеприведенной таблицы перевода.

Например:

0101101000112 = 0101 1010 0011 = 5A316

Билет 6

Принципы фон Неймана

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принципы фон Неймана

  1. Использование двоичной системы счисления в вычислительных машинах. Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.

  2. Программное управление ЭВМ. Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.

  3. Память компьютера используется не только для хранения данных, но и программ. При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.

  4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы. В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.

  5. Возможность условного перехода в процессе выполнения программы. Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

Билет 7

Компьютер имеет следующие основные блоки:

  • Системный блок.

  • Монитор.

  • Клавиатура.

  • Манипуляторы.

В системном блоке находится вся электронная начинка компьютера:

материнская (или системная) плата, которая содержит основные компоненты компьютера, определяющие его архитектуру, а именно:

микропроцессор – для выполнения вычислений и общего управления компьютером;

математический сопроцессор – для увеличения скорости вычислений с числами большой точности. Математический сопроцессор ускоряет расчеты, использующие операции над числами с плавающей запятой, примерно в 5-15 раз. В процессорах 486DX и PENTIUM сопроцессор уже внедрен в основной процессор и дополнительной установки не требуется.

память – для постоянного и временного хранения информации. Выделяют память следующих типов:

оперативная память – ОЗУ, RAM (Random Access Memory) для хранения выполняемых программ, исходных данных для обработки, для записи промежуточных и окончательных результатов. При выключении компьютера, перезагрузке, случайных сбоях по питанию все содержимое оперативной памяти стирается. Следовательно, при наборе каких-либо данных, текстов и т.д. надо периодически записывать промежуточные результаты на жесткий диск. Объем памяти измеряется в мегабайтах(Mb) и гигабайтах(Gb).

кэш-память – для ускорения доступа к оперативной памяти применяется "сверхбыстрая" статическая память, которая является буфером между очень быстрым процессором и более медленной оперативной памятью.

ПЗУ (постоянное запоминающее устройство) – служит для хранения программ внутреннего тестирования устройств, программы настройки конфигурации (SETUP). Совокупность этих микропрограмм называется BIOS (базовая система ввода-вывода), которая реализована в виде микросхемы на материнской плате.

CMOS – часть микросхемы BIOS, которая питается от специального аккумулятора на системной плате. В ней хранятся параметры конфигурации компьютера (ОЗУ, тип винчестера, флоппи-дисководы и т.д.).

Chipset – набор сверхбольших микросхем, на которых реализована вся архитектура платы.

Слоты (шины) расширения для установки контроллеров и адаптеров

накопители информации – для ввода/вывода и хранения информации; По способу записи и чтения информации на носитель дисковые накопители можно подразделить на:

    • магнитные (жесткий диск, флоппи-дисковод);

    • оптические (CD-ROM, CD-RW, DVD-ROM, DVD-RW – приводы);

    • магнитооптические.

контроллеры и адаптеры – устройства, предназначенные для передачи информации от материнской платы к периферийному устройству и обратно; Существует большое количество различных контроллеров и адаптеров. Самыми распространенными из них являются:

    • видеокарта;

    • звуковая карта;

    • сетевая карта;

    • модем.

блок питания – служит для преобразование напряжения сети 220 В (110 В) в напряжения питания конструктивных элементов компьютера: +12В, +5В и +3,3В.

Монитор является универсальным устройством вывода информации и подключается к видеокарте, которая устанавливается в слот расширения системной платы в системном блоке.

Изображение в компьютерном формате (в виде последовательностей нулей и единиц) хранится в видеопамяти, размещенной на видеокарте. Изображение на экране монитора формируется путем считывания содержимого видеопамяти компьютера и отображения его на экран.

Клавиатура служит для ввода информации в компьютер и подачи управляющих сигналов. Она содержит стандартный набор алфавитно-цифровых клавиш и некоторые дополнительные клавиши – управляющие и функциональные, клавиши управления курсором, а также малую цифровую клавиатуру.

Манипуляторы — это специальные устройства, которые используются для удобного управления курсором. К манипуляторам относятся следующие устройства:

1. Мышь имеет вид небольшой коробки, полностью умещающейся на ладони. Мышь связана с компьютером кабелем через специальный блок – адаптер, и её движения преобразуются в соответствующие перемещения курсора по экрану дисплея. В верхней части устройства расположены управляющие кнопки (обычно их три, причем часто роль третьей кнопки исполняет колесо прокрутки или скроллинга), позволяющие задавать начало и конец движения, осуществлять выбор меню и т.п.

Билет 8

Компьютерная сеть - система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения. 

Прикладные    программы:

 - это то, ради  чего  были  изобретены  компьютеры.

 редакторы  текстов  (используют различные шрифты, проверку  правописания, часто используются),

обработки   табличных  данных (вычислениепо  формулам,построение  графиков, диаграмм, таблиц),

бухгалтерские (для  ведения  бухгалтерского учета),

системы  управления базами данных (позволяют  управлять  большими массивами),

создания рисунков (черчение и конструирование механизмов – Autocad),

обучающие,

программы-словари (электронные  версии  обычных  словарей   с дополнительными возможностями),

программы  для  анимаций  (позволяют  создавать  двухмерные  и  трехмерные движущие  модели  обьектов  и  управлять  ими).

 Системные  программы.

 Это программы,  встроенные  в  ОС.

 1)Драйверы–программы,  позволяющие  ОС  работать  свнешними  устройствами (содержатся  в  комплекте  поставки ОС).

 2) Программы-оболочки - обеспечивают  удобный  способ  общения  с компьютером.