Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_Algebra.docx
Скачиваний:
1
Добавлен:
26.04.2019
Размер:
929.65 Кб
Скачать

Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как

Δxfx) = f(x + Δx) − f(x).

Линейную функцию   называют дифференциалом функции f в точке   и обозначают df. Для функции x производная в каждой точке   равна 1, то есть   Поэтому пишут: 

Приближенное значение функции вблизи точки   равно сумме ее значения в этой точке и дифференциала в этой же точке. Это дает возможность записать производную следующим образом: 

Часто эту запись используют, чтобы уточнить, по какой переменной дифференцируется функция.

Либо другой вариант Понятие дифференциала

Пусть функция y = f(x) дифференцируема при некотором значении переменной x . Следовательно, в точке xсуществует конечная производная

Тогда по определению предела функции разность

                            (1)

является бесконечно малой величиной при  . Выразив из равенства (1) приращение функции, получим

                    (2)

(величина   не зависит от  , т. е. остаётся постоянной при  ).

Если  , то в правой части равенства (2) первое слагаемое  линейно относительно  . Поэтому при

оно является бесконечно малой того же порядка малости, что и  . Второе слагаемое  - бесконечно малая более высокого порядка малости, чем первое, так как их отношение   стремится к нулю при

Поэтому говорят, что первое слагаемое формулы (2) является главной, линейной относительно  частью приращения функции; чем меньше  , тем большую долю приращения составляет эта часть. Поэтому при малых значениях  (и при  ) приращение функции можно приближенно заменить его главной частью  , т.е.

                (3)

Эту главную часть приращения функции называют дифференциалом данной функции в точке x и обозначают

или

Следовательно,

                   (4)

или

             (5)

Итак, дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.

Замечание. Нужно помнить, что если x – исходное значение аргумента,

- наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (5) это видно из записи, в формуле (4) – нет.

Дифференциал функции можно записать в другой форме:

                      (6) или

Смысл дифференцирования - это вычисления производной (?????????????????????!!!!!!!!!!!!!!!!!!!!!!!!!!!!??????????????????????????)

Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной, проведённой к графику этой функции в точке (xy), при изменении xна величину  .

Вопрос 33 (34). Применение дифференциала к приближенным вычислениям

Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δydyили Δy»f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)f'(x0)·Δx.

Откуда

f(x) ≈ f(x0) + f'(x0)·Δx

Примеры.

y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.

Имеем Δydy=f'(x)·Δx.

f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.

Поэтому Δy ≈ 4·0,01 = 0,04.

Вычислить приближенно значение функции   в точке x = 17.

Пусть x0= 16. Тогда Δx = x – x0= 17 – 16 = 1,  ,

.

Таким образом,  .

Вычислить ln 0,99.

Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.

Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.

f '(1)=1.Поэтому f(0,99) ≈ 0 – 0,01 = – 0,01.

Либо это http://www.sernam.ru/lect_math2.php?id=95

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]