Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_Машиностроение и машиноведение +++ ЧАСТЬ 2.doc
Скачиваний:
16
Добавлен:
05.05.2019
Размер:
4.49 Mб
Скачать

Колебательной системы

На рис. 2 обозначены:

1. – соответственно жесткости амортизаторов 12, 13 (см. рис. 1) и упругой системы горизонтального привода. Коэффициенты неупругого сопротивления амортизаторов и упругой системы между активной и реактивной части системы горизонтального привод - .

2. – соответственно, жесткости амортизаторов 12, 13 (см. рис. 1) и упругой системы между активной и реактивной частями вертикального привода. Коэффициенты неупругого сопротивления амортизаторов и упругой системы между активной и реактивной частями системы вертикального привода - .

3. – амплитуды возмущающего момента горизонтальных колебаний и силы вертикальных колебаний, соответственно.

Принимая для системы горизонтальных колебаний в качестве обобщенных координат и угловые перемещения инерционных элементов и , записывая выражения кинетической и потенциальной энергии, а также функции диссипации, дифференцируя их, и подставляя в уравнение Лагранжа 2-го рода, получим следующие дифференциальные уравнения движения систем

(1)

где – угловая частота возбуждения колебаний.

При наличии в линейных дифференциальных уравнениях членов с четными и нечетными производными решения следует искать через синусоидальные и косинусоидальные компоненты, иными словами, с двумя неизвестными компонентами (или через амплитудную величину и фазу перемещения)

(2)

Получим систему алгебраических уравнений, из которой согласно [1] определитель системы раскрывается как сумма квадратов действительной и мнимой частей

(3)

(4)

Величины амплитуд колебаний масс и фазовых сдвигов по отношению к возмущающему моменту в соответствии с работой [1] определяются по следующим формулам:

(5)

(6)

. (7)

Из (4) мы разделим , на и обозначив

; (8)

Имеем

Пренебрегая вследствие малости произведением и обозначая

; (9)

имеем

(10)

Из (10), (5), (6), (7) перепишем

(11)

(12)

Используя (11), (12) и задавая примерные параметры системы строим графики зависимостей амплитуды и угла сдвига фаз активной массы от соотношения частот на рис. 3.

Аналогично, для вертикальных колебаний, применяя тот же метод [1] получаем выражения амплитуд

(13)

и угла сдвига фаз

(14)

Мы считаем жесткость механической конструкции (рычаги 10, 14; вал 11, см. рис. 1) бесконечной, поэтому вертикальная суммарная жест-

кость

где с9 - жесткость центральной пружины 9.

а б

Рис. 3. Графики зависимости амплитуды (а) и угла сдвига фаз (б)

Активной массы от соотношения частот при различных величинах затухания в горизонтальном направлении системы

;

Используя (13) и (14) и также задавая примерные параметры системы строим графики, выражающие зависимость амплитуды и угла сдвига фаз активной массы от соотношения частот (рис. 4).

а б

Рис. 4. Графики зависимости амплитуды (а) и угла сдвига фаз (б)