Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mineralogia_-_otvety_k_ekzamenu.doc
Скачиваний:
13
Добавлен:
21.05.2019
Размер:
360.45 Кб
Скачать

Вторые Вопросы

1 Процессы минералообразования, их типы

Современные представления о генезисе минералов.

Главные генетические типы минералообразующих процессов - эндогенные (в том числе метаморфические) и экзогенные.

Минеральные ассоциации пегматитов.

Гидротермальные минеральные ассоциации.

Контактово-метасоматические процессы

Минеральные ассоциации альбититов и грейзенов.

Минеральные ассоциации гипергенных процессов.

Минеральные ассоциации метаморфических образований.

2 Эндогенные процессы

Эндогенные процессы, геологические процессы, связанные с энергией, возникающей в недрах твёрдой Земли. К Э. п. относятся тектонические движения земной коры, магматизм, метаморфизм горных пород, сейсмическая активность. Главными источниками энергии Э. п. являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация).

Глубинное тепло Земли имеет преимущественно радиоактивное происхождение. Непрерывная генерация тепла в недрах Земли ведёт к образованию потока его к поверхности. На некоторых глубинах в недрах Земли при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии является астеносфера — основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительной причиной вертикального и ыв45 оггоризонтального движений литосферы. В зонах вулканических поясов островных дуг и окраин континентов основные очаги магм связаны со сверхглубинными наклонными разломами (зоны Заварицкого — Беньофа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинной магмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов или изливается на поверхность, образуя вулканы.

Гравитационная дифференциация вела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям.

Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, может объяснить наличие в истории земной коры тектоно-магматических циклов. Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделения земной коры на более или менее геологически активные области, например на геосинклинали и платформы. С Э. п. связано формирование рельефа Земли и образование многих важнейших полезных ископаемых.

№3 Условия образования и типичные минералы магматических процессов

Магматические процессы. Прежде, чем рассматривать собственно магматические процессы минералообразования, дадим определения что такое магма и лава.

Магмой называется сложный по составу расплав, содержащий многие химические элементы и их соединения, образующийся в глубинных частях Земли или других планет. Особую роль в магме играют кремнекислородные соединения и поэтому магму часто называют силикатным расплавом, главными составляющими которого являются оксиды кремния, алюминия, железа, магния, кальция, натрия и калия. Остальные элементы присутствуют в магме в существенно меньших количествах. Кроме того в магме растворены газообразные и летучие вещества (вода, углекислота, углеводороды, сернистые соединения и др.), принимающие активное участие в процессах образования минералов. Минералы, образующиеся при застывании магмы представляют собой соединения, состоящие из тех химических элементов, которые в ней содержались. При застывании магмы в глубинных частях планет возникают интрузивные или плутонические породы.При движении отдельных блоков земной коры или кор других планет магма выжимается по трещинам или ослабленным зонам на поверхность. При этом магма оказывается в областях меньшего давления, где происходит потеря магмой большей части летучих соединений, растворенных в ней. Магма превращается в лаву. При застывании последней возникают эффузивные или вулканические породы. Обе группы магматических пород получили название изверженных, т.е. образовавшихся из расплавов. Огромные массы изверженных горных пород формировались практически на всех этапах геологического развития планет земной группы и некоторых спутников планет-гигантов. Эффузивные породы при быстром остывании на поверхности планеты раскристаллизовывались не полностью и поэтому в своем составе содержат вулканическое стекло и округлые пустоты, свидетельствующие об обильном выделении растворенных в магме (лаве) газообразных продуктов. Главным признаком всех интрузивных пород является их относительно крупная зернистость и отсутствие аморфного стекла, что свидетельствует о медленной кристаллизации магмы на больших глубинах.

Возникновение магм обычно связывается с внутренней тепловой энергией планеты - радиоактивным распадом некоторых химических элементов и движением отдельных блоков коры планет относительно друг друга. Эти явления приводят к локальному нагреву и плавлению окружающих пород. При движении к поверхности планет магмы различного состава могут смешиваться между собой и растворять захваченные по пути следования обломки других горных пород. Таким образом возникают магмы различного типа, кристаллизация которых объясняет наблюдаемое разнообразие изверженных горных пород.

В зависимости от содержания SiO2 магмы и, соответственно, магматические или изверженные горные породы подразделяются на ультраосновные, основные, средние и кислые. Первые содержат менее 45% кремнезема, последние - более 65%. Подобные вариации наблюдаются и для других химических элементов. Наиболее распространенным типами пород на Земле являются граниты и базальты.

Последовательность кристаллизации минералов из магмы при охлаждении последней зависит как от ее исходного состава, так и от условий кристаллизации. При движении магмы от области ее генерации к поверхности сульфидные комплексы могут отщепляться от нее и кристаллизоваться независимо от других составляющих силикатных расплавов. Таким путем формировались руды медно-никелевых ликвационных месторождений. От магмы могут отщепляться также некоторые минералы, принадлежащие классу оксидов, образуя, например, хромитовые залежи, часто содержащие элементы платиновой группы. Помимо образования сульфидных и окисных минералов на ранних стадиях кристаллизации магмы выделяется также островной силикат оливин - (Mg,Fe)2SiO4, являющийся одним из главных породообразующих минералов в ультраосновных и основных изверженных породах.

темноцветные светлоокрашенные

Оливин (Mg,Fe)2SiO4 Анортит CaAl2Si2O8

Пироксен Ca(Mg,Fe)Si2O6

Амфибол Ca2(Mg,Fe)5[Si8O22](OH)2

Биотит K(Mg,Fe)2[AlSi3O10](OH)2

Мусковит KAl2[AlSi3O10](OH)2 Ортоклаз KAlSi3O8 Альбит NaAlSi3O8

Кварц SiO2

Таким образом, в процессе кристаллизации магмы увеличение ее кремнекислотности при одновременном возрастании роли летучих, приводит к образованию на поздних стадиях все более кислых пород.

Некоторые типы магматических пород залегают в форме жил или прожиклов. Они образуются в результате заполнения трещин различными минеральными веществами. В трещины из глубинных частей земной коры могли проникать остаточные расплавы, разнообразные пары и газы (флюиды) или горячие водные растворы.

В соответствии с этим жилы по типу источника вещества их слагающих подразделяются на пегматитовые, образовавшиеся в результате собственно магматического процесса на одной из заключительных стадий его протекания, пневматолитовые, в образовании которых приняли участие флюиды, входившие в состав магмы, и гидротермальные, сформированные из горячих водных растворов, поступавших из глубинных частей земной коры.

№4 Условия образования и типичные минералы пегматитовых процессов

Пегматитовые процессы. В конце основной стадии магматической кристаллизации остаточный расплав заметно обогащается кремнеземом, глиноземом, щелочами и летучими компонентами. Наряду с этим он также концентрирует в себе значительные количества редких и рассеянных элементов (Li, Be, B, F, Rb, Cs, р.з.э., Mo, Zr, Hf, Ta, Nb, Th, U и др.), размеры ионных радиусов которых не позволили им войти в структуры обычных породообразующих минералов. Обилие легколетучих компонентов (главным образом Н2О) обуславливает низкую вязкость остаточного расплава, из-за чего последний может легко проникать в трещины и полости вмещающих его пород. Дальнейшая кристаллизация такого расплава приводит к образованию пегматитовых жил. Пегматиты обычно образуются в ассоциации с кислыми (граниты) или щелочными (нефелиновые сиениты) породами. По своему минеральному составу пегматиты близки к материнским породам - главная их масса состоит из тех же породообразующих минералов, однако число и распространенность второстепенных минералов в пегматитах в некоторых случаях существенно больше, чем в материнских породах. Так, например, в гранитных пегматитах кроме породообразующих минералов (полевые шпаты, кварц, слюды) иногда наблюдаются фтор- и борсодержащие соединения

(топаз - Al2[SiO4](F,OH)2, турмалин - Na(Mg,Fe)3Al6[Si6O18] (BO3)3(OH)4), минералы бериллия (берилл - Be3Al2Si6O18), лития (литиевые пироксены и слюды), редкоземельных элементов, ниобия, тантала и др. Большинство пегматитов обладает крупнозернистой структурой; отдельные минералы в них иногда достигают гигантских размеров. Во многих пегматитовых жилах наблюдается зональное строение, выраженное в закономерном распределении минералов. Пегматитовые минеральные ассоциации:

шерл, альбит

аквамарин, кварц, мусковит, спессартин

топаз, альбит, кварц

топаз, полевой шпат

турмалин, лепидолит.

В некоторых случаях пегматитовый расплав-раствор может проникать по трещинам в контрастные по составу вмещающие интрузив породы. При этом в результате взаимодействия вмещающих пород с остаточным расплав-раствором состав последнего может измениться и стать существенно отличным от состава пегматитов, залегающих в материнских породах. Такие пегматиты по классификации академика А.Е. Ферсмана относятся к пегматитам линии скрещения, в отличие от рассмотренных выше пегматитов чистой линии. Важно подчеркнуть, что все пегматиты образуются в конце собственно магматического процесса и занимают как бы промежуточное положение между глубинными магматическими породами и постмагматическими пневматолито-гидротермальными образованиями.

№5 Условия образования и типичные минералы пневматолито-гидротермальных процессов

Пневматолито-гидротермальные процессы. Явление пневматолиза (от греческого "пневма" - газ) протекает в тех случаях, когда вследствие перепада давлений происходит вскипание остаточного расплав-раствора и вся жидкость переходит в газообразную фазу, вступая при этом в реакцию с ранее выделившимися твердыми минералами.

Если отщепление летучих, в том числе и паров воды, на заключительной стадии кристаллизации магмы или образования пегматитов происходило на больших или средних глубинах, то высвободившиеся при этом летучие соединения в газообразной форме могли вступать в химические реакции с вмещающими породами, производя, так называемый, контактовый метаморфизм. Степень метаморфизма и состав получающихся продуктов определялись главным образом химической активностью флюида и составом реагирующей с ним породы. Наиболее интенсивные изменения установлены для зон контактов гранитных массивов с известковистыми породами. В результате разнообразных реакций замещения (метасоматических реакций) в этом случае возникают породы, получившие название скарны. Источниками вещества для их формирования послужили как вмещающие породы, так и некоторые составляющие части магмы. С образованием скарнов нередко связаны крупные месторождения железа, вольфрама, молибдена и некоторых других металлов.

Если отщепление летучих в магматическом очаге или пегматитовых телах происходило на относительно малых глубинах, то дальнейшая миграция (удаление от магматического очага) такого флюида могла привести, в конечном итоге, к образованию другого типа жильных тел. В тех случаях, когда формирование минерального вещества в этих жилах происходило выше критической точки воды (374,5 оС), т.е. активную роль в этом процессе играли пар и флюиды, принято говорить о собственно пневматолитовом генезисе. Если формирование минерального вещества происходило ниже критической точки воды, т.е. вода в качестве самостоятельной жидкой фазы играла существенную роль в процессе образования минеральных ассоциаций, говорят о гидротермальном генезисе.

Минеральный состав пневматолитовых и гидротермальных жил крайне разнообразен. Жилы в большинстве случаев сложены кварцем, карбонатами, которые заключают в себя скопления самородных элементов (Au, Ag, Bi), сульфидов, селенидов и теллуридов таких элементов как Mo, Bi, Cu, Zn, Ag, Pb, Sb, Hg и др., оксисоединений вольфрама, Mo, Sn, U и некоторые другие минералы. Именно с пневматолитово-гидротермальными процессами связано образование крупных месторождений редких (W, Mo, Sn, Bi, Sb, As, Hg), цветных (Cu, Pb, Zn), благородных (Au, Ag) и радиоактивных (U, Th) металлов.

В соответствии с температурой образования гидротермальные месторождения подразделяются на высокотемпературные (гипотермальные), возникшие при температурах 400-300 оС, среднетемпературные (мезотермальные) с температурами образования минеральных ассоциаций от 300 до 150 оС и низкотемпературные (эпитермальные), формирующиеся при температурах 150-50 оС. Гидротермальные месторождения, расположенные вблизи магматического очага - обычно высокотемпературные, а расположенные на удалении от магматического очага - низкотемпературные.

№6 Условия образования и типичные минералы метасоматических процессов

Наиболее интенсивные изменения установлены для зон контактов гранитных массивов с известковистыми породами. В результате разнообразных реакций замещения (метасоматических реакций) в этом случае возникают породы, получившие название скарны. Источниками вещества для их формирования послужили как вмещающие породы, так и некоторые составляющие части магмы. С образованием скарнов нередко связаны крупные месторождения железа, вольфрама, молибдена и некоторых других металлов.

Если отщепление летучих в магматическом очаге или пегматитовых телах происходило на относительно малых глубинах, то дальнейшая миграция (удаление от магматического очага) такого флюида могла привести, в конечном итоге, к образованию другого типа жильных тел (рис. 14). В тех случаях, когда формирование минерального вещества в этих жилах происходило выше критической точки воды (374,5 оС), т.е. активную роль в этом процессе играли пар и флюиды, принято говорить о собственно пневматолитовом генезисе. Если формирование минерального вещества происходило ниже критической точки воды, т.е. вода в качестве самостоятельной жидкой фазы играла существенную роль в процессе образования минеральных ассоциаций, говорят о гидротермальном генезисе.

Минеральный состав пневматолитовых и гидротермальных жил крайне разнообразен. Жилы в большинстве случаев сложены кварцем, карбонатами, которые заключают в себя скопления самородных элементов (Au, Ag, Bi), сульфидов, селенидов и теллуридов таких элементов как Mo, Bi, Cu, Zn, Ag, Pb, Sb, Hg и др., оксисоединений вольфрама, Mo, Sn, U и некоторые другие минералы. Именно с пневматолитово-гидротермальными процессами связано образование крупных месторождений редких (W, Mo, Sn, Bi, Sb, As, Hg), цветных (Cu, Pb, Zn), благородных (Au, Ag) и радиоактивных (U, Th) металлов.

№7 Условия образования и типичные минералы гидротермальных процессов

В соответствии с температурой образования гидротермальные месторождения подразделяются на высокотемпературные (гипотермальные), возникшие при температурах 400-300 оС, среднетемпературные (мезотермальные) с температурами образования минеральных ассоциаций от 300 до 150 оС и низкотемпературные (эпитермальные), формирующиеся при температурах 150-50 оС. Гидротермальные месторождения, расположенные вблизи магматического очага - обычно высокотемпературные, а расположенные на удалении от магматического очага - низкотемпературные.

№8 Экзогенные процессы

Экзогенные процессы, геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Э. п. протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся: выветривание, геологическая деятельность ветра (эоловые процессы, дефляция), проточных поверхностных и подземных вод (эрозия, денудация), озёр и болот, вод морей и океанов (абразия),ледников (экзарация). Главные формы проявления Э. п. на поверхности Земли: разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание); удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками; отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы (седиментогенез, диагенез, катагенез). Э. п. в сочетании с эндогенными процессами участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Так, например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органические вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

9 Условия образования и типичные минералы процессов выветривания

Выветривание, процесс разрушения и изменения горных пород в условиях земной поверхности под влиянием механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит В., различают атмосферное и подводное (см. Гальмиролиз). По роду воздействия В. на горные породы различают: физическое В., ведущее только к механическому распаду породы на обломки; химическое В., при котором изменяется химический состав горной породы с образованием минералов, более стойких в условиях земной поверхности; органическое (биологическое) В., сводящееся к механическому раздроблению или химическому изменению породы в результате жизнедеятельности организмов. Своеобразным типом В. является почвообразование, при котором особенно активную роль играют биологические факторы. В. горных пород совершается под влиянием воды (атмосферные осадки и грунтовые воды), углекислоты и кислорода, водяных паров, атмосферного и грунтового воздуха, сезонных и суточных колебаний температуры, жизнедеятельности макро- и микроорганизмов и продуктов их разложения. На скорость и степень В., мощность продуктов В. и на их состав, кроме перечисленных агентов, влияют также рельеф и геологическое строение местности, состав и структура материнских пород. Подавляющая масса физических и химических процессов В. (окисление, сорбция, гидратация, коагуляция) происходит с выделением энергии. Обычно виды В. действуют одновременно, но в зависимости от климата тот или иной из них преобладает. Физическое В. происходит главным образом в условиях сухого и жаркого климата и связано с резкими колебаниями температуры горных пород при нагревании солнечными лучами (инсоляция) и последующем ночном охлаждении; быстрое изменение объёма поверхностных частей пород ведёт при этом к их растрескиванию. В областях с частыми колебаниями температуры около 0°С механическое разрушение пород происходит под влиянием морозного В.; при замерзании воды, проникшей в трещины, объём ее увеличивается и порода разрывается. Химические и органические В. свойственны главным образом пластам с влажным климатом. Основные факторы химического В. — воздух и особенно вода, содержащая соли, кислоты и щелочи. Водные растворы, циркулирующие в толще пород, помимо простого растворения, способны производить также сложные химические изменения.

Физические и химические процессы В. происходят в тесной взаимосвязи с развитием и жизнедеятельностью животных и растений и действиям продуктов их распада после смерти. Наиболее благоприятными для образования и сохранения продуктов В. (минералов) вместе являются условия тропического или субтропического климата и незначительное эрозионное расчленение рельефа. При этом толще горных пород, подвергшихся В., свойственна (в направлении сверху вниз) геохимическая зональность, выраженная характерным для каждой зоны комплексом минералов. Последние образуются в результате следующих друг за другом процессов: распада пород под влиянием физического В., выщелачивания оснований, гидратации, гидролиза и окисления. Эти процессы часто идут до полного разложения первичных минералов, вплоть до образования свободных окислов и гидроокислов. В зависимости от степени кислотности — щёлочности среды, участия биогенных факторов образуются минералы различного химического состава: от устойчивых в щелочной среде (в нижних горизонтах) до устойчивых в кислой или нейтральной среде (в верхних горизонтах). Разнообразие продуктов В., представленных различными минералами, определяется составом минералов первичных горных пород. Например, на ультраосновных породах (серпентинитах) верхняя зона представлена породами, в трещинах которых образуются карбонаты (магнезит, доломит), керолиты, сепиолит. Далее следуют горизонты: карбонатизации (кальцит, доломит, арагонит), в верхней части которого по трещинам могут образоваться никелевые керолиты, гарниерит, гидролиза, с которым связано образование нонтронита и накопление никеля (NiO до 2,5%): окремнения (кварц, опал, халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), гётитом, магнетитом, окислами и гидроокислами марганца (никель и кобальтсодержащими). С процессами В. этого типа пород связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.

На карбонатитах, первично состоящих более чем на 90% из кальцита, анкерита или сидерита и небольшого количества минералов-примесей (пироксенов, амфиболов, тантало-ниобатов и редкоземельных минералов), конечные продукты В. становятся рыхлыми. В результате окисления карбонатов накапливаются гидроокислы железа, а окислы кальция и магния подвергаются существенному выносу, что приводит к увеличению содержания минералов-примесей, устойчивых в гипергенных условиях. В связи с этим свежие карбонатиты даже при ничтожном содержании ниобия, тантала, редких земель и фосфора при В. могут дать промышленные месторождения этих элементов. При В. угля (физическом) происходят его разрыхление до образования угольной сажи, потеря блеска, изменение мощности пластов; в составе углей при химическом В. содержание углерода, водорода уменьшается, а кислорода в органической массе увеличивается, кроме того, увеличивается влажность угля, понижается способность его к спеканию, уменьшается теплопроводность.

В тех случаях, когда продукты В. не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера В., так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения. Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы В.; для слоистых осадочных и метаморфических — ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков против В. ведёт к образованию останцов в виде изолированных гор, столбов, башен и т.п. Во влажном климате на наклонных поверхностях однородных сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров. В процессе перерождения остаточных продуктов В. образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы В. приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.

№10 Условия образования и типичные минералы осадочных процессов

№11 Условия образования и типичные минералы метаморфогенных процессов

Метаморфогенные месторождения, залежи полезных ископаемых, образовавшиеся в процессе метаморфизма горных пород, в обстановке высоких давлений и температур. Разделяются на метаморфизованные и метаморфические.

Метаморфизованные месторождения возникают вследствие процессов регионального и локального метаморфизма полезных ископаемых. Тела полезных ископаемых деформируются и приобретают черты, свойственные метаморфическим породам, — развиваются сланцеватые и волокнистые текстуры, гранобластические структуры. Минералы малой плотности заменяются минералами высокой объёмной массы. Водосодержащие минералы вытесняются безводными, аморфное вещество раскристаллизовывается.

Метаморфические месторождения возникают вновь в процессе метаморфизма горных пород. Известняки превращаются в мраморы, песчаники — в кварциты, глинистые породы — в кровельные сланцы, а при высокой степени метаморфизма — в залежи андалузита, кианита и силлиманита, на месте бокситовых отложений возникают наждаки.

12 Минеральный состав кислых и ультраосновных горных пород

Кислые горные породы

Главные: Кварц, ортоклаз, микроклин, плоагиоклаз, роговая обманка, мусковит.

Второстепенные: Магнетит, циркон, ортит, сфен, пирит,

Вторичные гидротермные: Сфен, топаз, флюорит, турмалин, мусковит, хлоританотаз.

Вторичные экзогенные: каолинит, опал, кальцит, бурый железняк

Ультраосновные горные породы

Главные: Оливин, пироксен, актинолит.

Второстепенные: роговая обманка, основной плагиоклаз , магнетит, ильменит, хромит, пироп, перовскит, анортит

Вторичные гидротермальные: серпентин, хризотил – асбест, брусит, магнетит

Вторичные экзогенные: кварц, халцедон, опал, бурый железняк.

13 Минеральный состав кислых и щелочных пегматитов

Гранитные пегматиты

Частой линий

А) формация полевых шпатов, мусковита, и редкоземельных минералов.

Главные: Кварц, полевые шпаты, мускавит, альбит

Второстепенные: биотит, турмалин, апатит, циркон

Э гранир, магнетит, ортит, сфен, танталит

Б) Формации редкоземельных минералов.

Главные: Микроклин, амазонит, кварц, альбит, плагоклаз, биотит, мусковит

Второстепенные: Ортит, марион, топаз, аметист

Линий скрещивания

А) Биотит, флогопит, антимонит, хлорит,тальк

Второстеенные: изумруды, александрит

Б) Формация корундов

Главные: Корунд, плагиоклазы

Второстепенные: Гранаты, турмалин, Биотит, рутил, диаспор, вермикулит, тальк

Щелочные плагиоклазы:

Главные: Нефелин, микроклин, эгирин, эвдиалит

Второстепенные: Эвдиалит, апатит, содалит, пирохлор.

14 Минеральный состав грейзенов и скарнов

Грейзены:

Кварц, мусковит, литиевые слюды, турмалин, топаз, флюорит, рутил

Ассоциируют касситерит, вольфрамит, шеелит, арсенопирит, молибденит, сфалерит

Скарны:

Основные: кальцит, диопсид, геденбергит, магнетит, гранат, халькопирит, сфалерит, галенит

Второстепенные: роговая обманка, хлорит, эпидот, флюорит, кварц, везувиан, гематит, пирит, кобальтин, висмутин, сидерит, касситерит.

15 Минеральный состав высоко-, средне, - низкотемпературных гидротермальных тел

Высокотемпературные:

Основные: кварц, топаз, касситерит, флюорит, пирротин, биотит, висмутин

Второстепенные: блеклая руда, золото, турмалин, магнетит.

Среднетемпературные:

Основные: кварц, турмалин, доломит, пирит, золото, галенит, хлорит, сфалерит, молибденит, касситерит, серебро самородное, барит

Второстепенные: шеелит, актинолит, гематит, арагонит, брусит, перовскит, галенит, уранит, самородный висмутин, халцедон.

Низкотемпературные:

Основные: кальцит, кварц, халькопирит, борнит, халькозин, реальгар, золото самородное, медь, опал, пирит, антимонит

Второстепенные: пирит, блеклая руда, хлорит, гематит, арсенопирит, марказит, эпидот.

16 Минеральный состав кор выветривания

В периоды тектонического покоя в районах влажного и тёплого климата происходит формирование К. в. наибольшей мощности. Разложение большой массы органических веществ приводит к образованию CO2 и органических кислот, которые, просачиваясь из почвы в К. в., производят глубокое разложение горных пород и кислое выщелачивание растворимых продуктов выветривания. Из К. в. выносится большинство подвижных элементов — Ca, Mg, Na, К, Si, многие редкие металлы. К. в. относительно обогащается наименее подвижными элементами — Fe, Al, Ti, Zr и др. с образованием гидроокислов Fe и Al, каолинита, галлуазита и др. глинистых минералов. Гидроокислы Fe придают К. в. красную и бурую окраску. В условиях спокойного тектонического режима во влажных тропиках К. в. достигает мощности десятков м, а в зонах разломов — сотен м. В зависимости от минерального состава различают ряд типов выщелоченной К. в. (каолиновая К. в., латеритная и т. д.).

17 Условия образования зоны вторичного сульфидного обогащения

Ниже уровня грунтовых вод находится зона цементации или зона вторичного сульфидного обогащения . Сульфаты реагируют здесь с первичными рудами, в результата чего образуются вторичные сульфиды:

FeS2 + CuSO4 + H2O => Cu2S + CuS + FeSO4 + H2SO4 (пирит => халькозин + ковеллин)

18 Минеральный состав осадочных образований

19 Минеральный состав метаморфических пород разных типов

20 Роль летучих компонентов в процессах минералообразования

21 Распространённость минералов разных классов в литосфере

К оксидам относятся минералы, представляющие собой соединения металлов и металлоидов с кислородом; гидроксиды содержат группу (ОН)-, добавочные анионы и (или) воду. Оксиды насчитывают около 300 минеральных видов, гидроксиды - более 80. Они составляют 17% массы литосферы. Среди представителей этого класса такие широко распространенные минералы, как семейство кремнезема (кварц, опал и др.), на долю которого приходится около 12.6% от массы литосферы; оксиды и гидроксиды железа (3.9%), алюминия.