Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат (Si).doc
Скачиваний:
19
Добавлен:
07.07.2019
Размер:
77.31 Кб
Скачать

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Общая и аналитическая химия»

РЕФЕРАТ

«Кремний (Si)»

Студент группы ГГ-10-02 В.И. Гареев

Доцент Л.Н. Зорина

2011 год

СОДЕРЖАНИЕ

  1. Формы нахождения в природе····················································3

  2. Методы получения···································································4

  3. Физические свойства································································5

  4. Химические свойства································································6

  1. Формы нахождения в природе

Кремний – второй по распространенности (после кислорода) элемент земной коры. В верхних осадочных слоях он содержится в виде глин, кварца и других соединений и составляет 27,6% состава земной коры.. Под осадочным находится слой базальтов и гранитов, в состав которых также входит кремний. Эти слои образуют земную кору и находятся на глубине до 35 км. В верхних слоях мантии (до 900 км) преобладают силикаты железа и магния. Ядро и нижняя мантия, по предположениям ученых, также состоят в основном из силикатов.

В чистом виде кремний в природе не встречается. Наиболее распространен оксид кремния и силикаты. Первый встречается в виде минерала кварца (кремнезем, кремень). В природе из этого соединения сложены целые горы. Попадаются очень крупные, до 40 т кристаллы кварца. Обычный песок состоит из мелкого кварца с различными примесями. Горный хрусталь – совершенно прозрачные кристаллы кварца. В зависимости от примесей он может приобретать различную окраску. Так, оксиды марганца и железа дают фиолетовый оттенок. Это аметист. Желтоватый хрусталь – цитрин, дымчатый – раухтопаз. В нем могут находится и различные включения. Кошачий глаз включает в себя волокнистые материалы, «стрелы Амура» - включения оксида титана.

Анализ лунного грунта показал присутствие оксида кремния (IV) в количестве более 40%. В составе каменных метеоритов содержание кремния достигает 20%.

Оксид кремния – кремень – сыграл важную роль в истории развития человечества. Именно с кремневых наконечников копий, ножей и топориков начинается истории большинства народов. Позже кремень стал источником огня – путешественники никуда не отправлялись без огнива. А глиняные дома, посуда, предметы быта! Трудно сказать, как бы развивался мир без стекла.

В наши дни все более необходим становится чистый кремний, как полупроводник. Так называемые «девять девяток чистоты» - 99,9999999% чистого кремния – первое требование к полупроводнику. Ни один из современных компьютеров не существовал бы без кремния. Тоже можно сказать и о ряде других технических средств. Велико значение различных веществ, основой которых являются соединения кремния. Это бетон, керамики, стекло.

В искусстве кремний тоже играл большую роль. Большинство драгоценных и полудрагоценных камней – соединения того же кремния. И опять же вспоминаются стеклянные, хрустальные и глиняные изделия.

  1. Методы получения

Наиболее простым и удобным лабораторным способом получения кремния является восстановление оксида кремния SiO2 при высоких температурах металлами-востановителями. Вследствие устойчивости оксида кремния для восстановления применяют такие активные восстановители, как магний и алюминий:

3SiO2 + 4Al = 3Si + 2Al2O3

При восстановлении металлическим алюминием получают кристаллический кремний. Способ восстановления металлов из их оксидов металлическим алюминием открыл русский физикохимик Н.Н. Бекетов в 1865 году. При восстановлении оксида кремния алюминием выделяющейся теплоты не хватает для расплавления продуктов реакции – кремния и оксида алюминия, который плавится при 2050 °С. Для снижения температуры плавления продуктов реакции в реакционную смесь добавляют серу и избыто алюминия. При реакции образуется легкоплавкий сульфид алюминия:

2Al + 3S = Al2S3

Капли расплавленного кремния опускаются на дно тигля.

Кремний технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами.

SiO2+2C=Si+2CO

В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых его извлекают путём восстановления или термического разложения.

Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния — метод Чохральского).

Путём хлорирования технического кремния получают тетрахлорид кремния.

Старейшим методом разложения тетрахлорида кремния является метод выдающегося русского химика академика Н.Н. Бекетова. Метод этот можно представить уравнением:

SiCl4+Zn=Si+2ZnCl2

Здесь пары тетрахлорида кремния, кипящего при температуре 57,6°C, взаимодействуют с парами цинка. В настоящее время тетрахлорид кремния восстанавливают водородом. Реакция протекает по уравнению:

SiCl4+2Н2=Si+4НCl

Кремний получается в порошкообразном виде. Применяют и йодидный способ получения кремния, аналогичный описанному ранее йодидному методу получения чистого титана.

Чтобы получить чистыми кремний, его очищают от примесей зонной плавкой аналогично тому, как получают чистый титан.

Для целого ряда полупроводниковых приборов предпочтительны полупроводниковые материалы, получаемые в виде монокристаллов, так как в поликристаллическом материале имеют место неконтролируемые изменения электрических свойств.

При вращении монокристаллов пользуются методом Чохральского, заключающимся в следующем: в расплавленный материал опускают стержень, на конце которого имеется кристалл данного материала; он служит зародышем будущего монокристалла. Стержень вытягивают из расплава с небольшой скоростью до 1-2 мм/мин. В результате постепенно выращивают монокристалл нужного размера. Из него вырезают пластинки, используемые в полупроводниковых приборах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]