Скачиваний:
62
Добавлен:
01.04.2014
Размер:
150.02 Кб
Скачать

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет заочного обучения

Проектирование и производство радиоэлектронных средств

Контрольная работа

По предмету: «Конструирование и технология изделий интегральной электроники »

Тема: «V-МДП транзистор»

Яхновец Д.Л.

900201-35

м.т. 8 (044) 771-60-01

8 (029) 753-44-75

Минск 2011

Содержание

Введение …………………………………………………………………………..2

1 Краткое описание МДП транзисторов………………………………………...3

2 V-МДП транзистор………………………………………………………….......5

3 Структура V-МДП-транзистора………………………………………………..9

3.1 Технология изготовления V-МДП-транзистора………………………….…9

Заключение……………………………………………………………………….11

Список использованной литературы………………………………………….13

Введение

Среди многочисленных разновидностей полевых транзисторов, возможно, выделить два основных класса: полевые транзисторы с затвором в виде p-n перехода и полевые транзисторы с затвором, изолированным от рабочего полупроводникового объема диэлектриком. Приборы этого класса часто так же называют МДП-транзисторами (от словосочетания металл-диэлектрик-полупроводник) и МОП транзисторами (от словосочетания металл-окисел - полупроводник), поскольку в качестве диэлектрика чаще всего используется окись кремния.

Основной особенностью полевых транзисторов, по сравнению с биполярными, является их высокое входное сопротивление, которое может достигать 109 - 1010 Ом. Таким образом, эти приборы можно рассматривать как управляемые потенциалом, что позволяет на их основе создать схемы с чрезвычайно низким потреблением энергии в статическом режиме. Последнее особенно существенно для электронных статических микросхем памяти с большим количеством запоминающих ячеек.

Так же как и биполярные полевые транзисторы могут работать в ключевом режиме, однако падение напряжения на них во включенном состоянии весьма значительно, поэтому эффективность их работы в мощных схемах меньше, чем у биполярных приборов.

Полевые транзисторы могут иметь как p, так и n управление которыми осуществляется при разной полярности на затворах. Это свойство комплементарности расширяет возможности при конструировании схем и широко используется при создании запоминающих ячеек и цифровых схем на основе МДП транзисторов (CMOS схемы).

Полевые транзисторы относятся к приборам униполярного типа, это означает, что принцип их действия основан на дрейфе основных носителей заряда. Последнее обстоятельство значительно упрощает их анализ по сравнению с биполярными приборами, поскольку, в первом приближении, возможно, пренебречь диффузионными токами, неосновными носителями заряда и их рекомбинацией.

1 Краткое описание мдп транзисторов

Транзисторы со структурой МДП представляют собой одну из разновидностей полевых транзисторов – активных полупроводниковых приборов, в которых используются эффекты дрейфа основных носителей под действием продольного электрического поля и модуляции дрейфового тока поперечным электрическим полем. Действие полевых транзистор основано на перемещении только основных носителей заряда в полупроводниковом материале, в связи с чем эти транзисторы называются униполярными в отличии от биполярных, в которых используются оба типа носителей.

МДП–транзисторы имеют существенные преимущества перед биполярными по конструкции (размеры и занимаемая ими площадь относительно не велики, отсутствует необходимость их изоляции) и электрофизическим параметрам (низкий уровень шумов, устойчивость к перегрузкам по току, высокое входное сопротивление и помехоустойчивость, малая мощность рассеивания, низкая стоимость).

В тоже время БИС на МДП–транзисторах уступают БИС на биполярных транзисторах в технологической воспроизводимости и стабильности параметров.

На рис.1 представлена конструкция МДП–транзистора. Области стока и истока одного типа проводимости и самоизолированы друг от друга pn переходом. Принцип действия МДП–транзистора основан на эффекте модуляции электропроводности поверхностного слоя полупроводникового материала, расположенного между стоком и истоком. Тип электропроводности канала обязательно совпадает с типом электропроводности областей стока и истока. Так как тип электропроводности истока , стока и канала противоположен типу электропроводности подложки, то сток, исток и канал изолируется от подложки pn переходом.

В зависимости от типа основных носителей тока в канале различают nканальные и pканальные МДП–транзисторы. По конструктивно–технологическому исполнению МДП–транзисторы подразделяют на две разновидности: со встроенным и с индуцированным каналами (рис. 12). Электрическое сопротивление канала зависит от длины lк и его ширины bк, оно модулируется напряжением на затворе uз и зависит от напряжения наведенного поля в полупроводнике, обратно пропорционально толщине диэлектрика hд и прямо пропорционально проницаемости диэлектрика д.

Помимо деления МДП–транзисторов по основному признаку –способу формирования и типу электропроводности проводящего канала – существует более детальная классификация, учитывающая конструктивно–технологическое исполнение МДП– транзисторов, например по материалу затвора (с алюминиевыми, молибденовыми, поликремневыми затворами); сочетанию с другими элементами в микросхеме, например комплементарные МДП–транзисторы (КМДП); по функциям, выполняемым в схеме, например активные и нагрузочные транзисторы.

Каждый из четырех типов МДП–транзисторов может быть использован в качестве нагрузки, а его подложка присоединена к источнику питания или нулевой шине. Затвор может иметь пять вариантов подключения: к выходу схемы, шине питания, нулевой шине, автономному источнику питания положительной или отрицательной полярности, ко входу микросхемы. Иными словами существует 48 вариантов использования МДП–транзистора в качестве нагрузки.

Базовой схемой многих МДП–микросхем является инвектор – ключевая схема, содержащая активный транзистор и нагрузку, включенные между шиной питания и землей. С учетом 48 вариантов использования МДП–транзисторов в качестве нагрузки и четырех вариантов схемного включения активного транзистора существует 192 варианта построения инверторов на основе двух МДП–транзисторах. В настоящее время используют только схему с линейной, нелинейной, квазилинейной, токостабилизирующей нагрузками и вариант инвертора на КМДП–транзисторах.

МДП–транзисторы могут служить в схеме и в качестве конденсаторов, для чего можно использовать емкость структур затвор – подложка или емкость обратносмещенных pn переходов сток(исток) – подложка.

Таким образом, МДП–транзистор может быть основным и единственным элементом МДП–микросхем. Он может выполнять функции активных приборов (ключевой транзистор в инверторах, усилительный транзистор), так и пассивных элементов (нагрузочный транзистор в инверторе, конденсатор в элементе памяти). При проектировании МДП–микросхем можно обходится только одним элементом – МДП–транзистором, конструктивные размеры которого и схема включения будут завесить от выполняемой функции. Это обстоятельство дает существенный выигрыш в степени интеграции.