Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЧТО ТАКОЕ СВЕТ ДЛЯ ФОТОГРАФИИ.docx
Скачиваний:
24
Добавлен:
12.07.2019
Размер:
416.33 Кб
Скачать

Что такое свет для фотографии?

Что такое свет? В словаре понятие свет определяется по-разному:

  • 1) нечто такое, что делает вещи видимыми или обеспечивает освещение; носитель или источник освещения такой, как солнце, лампа или сигнальный огонь;

  • 2) электромагнитное излучение, на которое реагируют органы зрения в диапазоне волн от приблизительно 4000 до 7700 ангстрем и которое распространяется со скоростью около 300000 км в секунду и включает такие аналогичные формы лучистой энергии, не влияющей на сетчатку глаза, как ультрафиолетовое и инфракрасное излучения,

  • 3) отсвет или блеск, как в глазах;

  • 4) особый свет или освещение, в котором видимый предмет принимает определенные очертания;

  • 5)человек, являющийся ярким или блестящим примером чего-либо - светило;

  • 6)умственное или духовное освещение или просвещение;

  • 7) ракурс, в котором появляется или рассматривается какая-то вещь.

Самое важное для фотографии - определение света, приведенное в пункте 2. Типы электромагнитного излучения меняются в зависимости от длинны волн. Начиная с самых коротких волн, электромагнитное излучение можно классифицировать как гамма-излучение, рентгеновское излучение, ультрафиолетовое световое излучение, инфракрасное световое излучение, видимое световое излучение, дальняя ИК-область спектра, микроволновое излучение(СВЧ), ультракоротковолновое излучение, коротковолновое излучение, средние волны(СВ) и длинные волны. В фотографии шире всего используются волны видимого светового спектра (400-700 мм). Поскольку свет это один из видов электромагнитного излучения, то его можно рассматривать как один из типов волн в категории "световых волн". Световая волна может рассматриваться как электромагнитная волна, в которой электрическое поле и магнитное поле колеблются под прямыми углами друг к другу перпендикулярно направлению распространения. Два элемента световой волны, которые действительно могут быть замечен ы человеческим глазом, это длинна и амплитуда волны. Различия в длине волны ощущаются как различия в цвете (в видимом световом диапазоне) , а различия в амплитуде ощущаются как различия в яркости (силе света). Третий элемент, который человеческий глаз не видит, это направление колебаний в плоскости, перпендикулярной направлению распространения световой волны.

Диаграмма концепции оптической волны

Основные явления, связанные со светом

Преломление Явление, при котором меняется направление распространения луча света, когда он переходит из одной среды в другую, как например, из вакуума или воздуха в такую другую среду, как стекло или вода или наоборот. Показатель преломления Численное значение, указывающее на степень преломления среды и выраженное формулой n=sin i/sin r. "n" это константа, не связанная с углом падения светового луча указывающая на показатель преломления преломляющей среды по сравнению со средой, из которой исходит луч. Для обычного оптического стекла "n" , как правило, обозначает показатель преломления стекла по отношению к воздуху. Дисперсия Явление, при котором оптические характеристики среды меняются в зависимости от длинны волны светового луча, проходящего через среду. Когда свет поступает в линзу или призму, характеристики дисперсии линзы или призмы вызывают изменения показателя преломления в зависимости от длинны волны, в результате чего свет рассеивается. Иногда это явление называют также цветовой дисперсией. Необычная частичная дисперсия Человеческий глаз в состоянии чувствовать монохроматические световые волны в диапазоне от 400 мм (пурпурные) до 700 мм (красные). В этом диапазоне разница в показателе преломления между двумя различными длинами волн называется частичной дисперсией. Большинство обычных оптических материалов обладают аналогичными характеристиками частичной дисперсии. Однако характеристики частичной дисперсии различны у некоторых стеклянных материалов, таких, как стекло, у которого бывает более значительная частичная дисперсия при коротких волнах, как стекло FK, у которого небольшой индекс преломления и низкие характеристики дисперсии, флюорит и стекло, у которого более значительная частичная дисперсия при длинных волнах. Эти типы стекла характеризуются как обладающие необычной частичной дисперсией. Стекло, обладающее такими характеристиками, используется в апохроматах, чтобы компенсировать хроматическую аберрацию.

Дисперсия света в призме

Отражение Отражение отличается от преломления тем, что представляет собой явление, ведущее к тому, что часть света, падающего на стекло или на другую среду, отделяется и идет в совершенно новом направлении. Направление движения одинаково, независимо от длинны волны. Когда свет попадает в линзу, не имеющую противоотражательного покрытия, и выходит из нее, то приблизительно 5% света отражается на границу между стеклом и воздухом. Количество отраженного света зависит от показателя преломления стеклянного материала.

Отражение света

Дифракция Явление, при котором световые волны попадают в район тени от объекта. В случае с фотообъективом экспозиция часто регулируется путем изменения размера диафрагмы объектива (апертуры), чтобы отрегулировать количество света, проходящего через объектив. Дифракция в фотообъективе происходит при малых диафрагмах, когда ребра диафрагмы мешают прохождению световых волн по прямой линии, в результате чего лучи света проходят близко к ребрам диафрагмы, огибая эти ребра на пути через диафрагму. Дифракция вызывает уменьшение контрастности и разрешающей способности изображения, в результате чего получается неконтрастное изображение. Хотя дифракция имеет тенденцию появляться тогда, когда диаметр диафрагмы меньше определенного размера, на самом деле она зависит не только от диаметра диафрагмы, но и от различных факторов, таких, как длинна волны света, фокусное расстояние и светосила объектива.

Дифракция света

ОПТИЧЕСКИЕ ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОПИСАНИЯ СВЕТА, ПРОХОДЯЩЕГО ЧЕРЕЗ ОБЪЕКТИВ

Оптическая ось

Прямая, связывающая центральные точки сферических поверхностей по обе стороны линзы. Другими словами, оптическая ось это гипотетическая центральная линия, связывающая центр кривизны на каждой поверхности линзы. В фотографических объективах, состоящих из нескольких линз, крайне важно, чтобы оптическая ось каждой линзы идеально совпадала с оптическими осями всех других линз. В особенности это относится к Зум-объективам, построенным из нескольких групп линз, которые движутся сложным образом. Для поддержания надлежащей оптической соосности необходима исключительно точная конструкция тубуса объектива.

Оптическая терминология, связанная со светом , проходящим через объектив

Параксиальный луч

Световой луч, проходящий вблизи оптической оси и наклоненный под очень небольшим углом к оптической оси. Точка, в которой сходятся параксиальные лучи, называется параксиальной фокальной точкой. Поскольку изображение, формируемое монохроматическим паракси- альным лучом, в принципе свободно от аберрации, параксиальный луч играет большую роль в понимании основ действия систем линз.

Основной луч

Световой луч, который попадает в объектив не в точке оптической оси и проходит через центр окна диафрагмы. Основные световые лучи это главные световые лучи, используемые для экспозиции изображения во всех окнах диафрагмы, начиная с максимальной и кончая минимальной апертурой.

Параллельный пучок лучей

Группа световых лучей двигающихся параллельно оптической оси из бесконечно удаленной точки. Когда эти лучи проходят через объектив, они сходятся в форме конуса и образуют точечное изображение на плоскости пленки.

Отслеживание луча

Использование геометрической оптики для расчета положения различных световых лучей, проходящих через объектив. Расчеты производятся с использованием супер компьютеров.

Диафрагма/эффективная диафрагма

Апертура(диафрагма) объектива связана с диаметром группы световых лучей, проходящих через объектив, и определяет яркость изображения объекта, образуемого в фокальной плоскости. Оптическая диафрагма (называемая также эффективной ) отличается от реальной диафрагмы объектива тем, что она зависит от диаметра группы световых лучей, проходящих через объектив, а не от фактического диаметра объектива. Когда параллельный пучок лучей попадает в объектив и группа этих лучей проходит через окно диафрагмы, диаметр этой группы лучей света в момент попадания на поверхность передней линзы и называется эффективной апертурой объектива.

"Дырка" / диафрагма/ апертура

Окно, регулирующее диаметр группы световых лучей, проходящих через объектив. Во взаимозаменяемых объективах, используемых в однообъективных зеркальных фотоаппаратах , этот механизм обычно построен по принципу ирисовой диафрагмы, состоящей из нескольких лепестков, способных двигаться, чтобы постоянно менять диаметр окна. В обычных объективах однообъективных зеркалок апертура регулируется путем вращения кольца апертуры на тубусе объектива. Однако в современных объективах фотоаппаратов регулирование апертуры обычно осуществляется с помощью электронной регулятора на корпусе аппарата.

Автоматическая диафрагма

Общая система действия диафрагмы, используемая в однообъективных зеркалках. Под ней подразумевается тип механизма диафрагмы, который остается полностью открытым в процессе фокусировки и создания композиции снимка, чтобы обеспечить яркое изображение в видоискателе, но который автоматически закрывается для установки апертуры, необходимой для правильной экспозиции, когда нажимается кнопка затвора, и опять открывается автоматически, когда завершена фотосъемка. Хотя в обычных объективах используются механические соединения для контроля за действием этой автоматической диафрагмы, в объективах с электронной фокусировкой применяется электронный сигнал для более точного контроля. Вы можете наблюдать эту операцию по мгновенному уменьшению диафрагмы, посмотрев в переднюю часть объектива в момент срабатывания затвора.

Расстояние падения

Расстояние от оптической оси параллельного луча, поступающего в объектив.

Входной зрачок/выходной зрачок

Изображение диафрагмы объектива со стороны объекта съемки, т.е. видимая апертура, если смотреть со стороны передней линзы объектива, называется входным зрачком и равнозначна по своему смыслу эффективной апертуре. Видимая апертура, которую можно наблюдать, когда смотришь с задней стороны объектива (изображение в объективе со стороны изображения на диафрагме), называется выходным зрачком. Из световых лучей, идущих от определенной точки объекта, эффективные лучи, которые фактически образуют изображение, создают конус световых лучей, причем точка объекта является вершиной конуса, а входной зрачок - его основанием. С другой стороны объектива световые лучи выходят в форме конуса, причем выходной зрачок образует основание конуса, а вершина конуса падает на плоскость изображения. Входной и выходной зрачки имеют такую же форму, как фактическая диафрагма, а их размеры прямо пропорциональны размерам диафрагмы, поэтому даже если система объектива неизвестна, можно графически показать эффективные световые лучи, которые в действительности образуют изображение, если известны положения и размеры входного и выходного зрачков. Таким образом, без знания входного и выходного зрачков обойтись нельзя, когда рассматриваются такие факторы действия аппарата, как общее количество света, попадающего в объектив, то, каким образом размывается изображение, и аберрации.

Входной и выходной зрачки

Угловая апертура

Угол между точкой предмета на оптической оси и диаметром входного зрачка или угол между изображающей точкой на оптической оси и диаметром выходного зрачка.

ОТБОРТОВАННАЯ ЗАДНЯЯ СТЕНКА И ЗАДНИЙ ФОКУС

Отбортованная задняя стенка

Расстояние между базовой поверхностью оправы объектива и фокальной плоскостью (плоскостью пленки). В системе EOS отбортованная задняя стенка устанавливается на расстоянии 44,00 мм на всех камерах. Отбортованную заднюю стенку также называют рабочим отрезком объектива.

Отбортованная стенка и задний фокус

Задний фокус

Когда объектив сфокусирован на бесконечность, расстояние вдоль оптической оси от высшей точки самой задней линзы до плоскости пленки называется задним фокусом. В однообъективных зеркальных фотоаппаратах, где используется зеркало быстрого возврата, которое поворачивается вверх в момент съемки, широкоугольный объектив с коротким задним фокусом использовать нельзя, потому что объектив помешает движению зеркала. Из-за этого в широкоугольный объективах для однообъективных зеркалок обычно применяется конструкция ретрофокуса, допускающая длинный задний фокус.

ФОКАЛЬНАЯ ТОЧКА И ФОКУСНОЕ РАССТОЯНИЕ

Фокальная точка, фокус

Когда лучи света попадают на выпуклую линзу параллельно оптической оси, идеальная линза соберет все световые лучи в одной точке, из которой они вновь разойдутся веером в форме конуса. Точка, где соединяются все лучи, называется фокальной точкой. Знакомым примером этого явления может служить увеличительное стекло, которое фокусирует солнечные лучи в маленький кружок на кусочке бумаги или на другой поверхности; точка, в которой этот кружок самый маленький, и является фокальной точкой.

Фокальная точка (элемент с одной линзой)

По оптической терминологии, фокальная точка также классифицируется как вторая или задняя фокальная точка, если она является точкой, в которой сходятся световые лучи от объекта на той стороне объектива, где расположена плоскость пленки. Фокальная точка называется первой или передней, если световые лучи, исходящие из объектива параллельно оптической оси со стороны плоскости пленки, сходятся на той стороне объектива, на которой находится объект съемки.

Фокусное расстояние

Когда параллельные лучи света попадают в объектив параллельно оптической оси, расстояние вдоль оптической оси от второй главной точки объектива (задней главной точки) до фокальной точки называется фокусным расстоянием. Говоря проще, фокусное расстояние объектива это расстояние вдоль оптической оси от второй главной точки объектива до плоскости пленки, когда объектив сфокусирован в бесконечность.

Фокусное расстояние реального фотообъектива

Главная точка

Фокусное расстояние в тонком одноэлементном объективе с двояковыпуклой линзой это расстояние вдоль оптической оси от центра объектива до его фокальной точки. Центральная точка объектива называется главной точкой. Однако поскольку настоящие фотообъективы состоят из сочетаний нескольких выпуклых и вогнутых линз, зрительно не ясно, где может находиться центр объектива. Поэтому главная точка многоэлементного объектива определяется как точка на оптической оси, находящаяся на расстоянии, равном фокусному расстоянию, отмеряемому назад, от фокальной точки до объектива. Главная точка, отмеренная от передней фокальной точки, называется передней главной точкой, а главная точка, отмеряемая от задней фокальной точки, называется задней главной точкой. Расстояние между этими двумя главными точками называется отрезком между двумя главными точками.