Скачиваний:
314
Добавлен:
24.04.2014
Размер:
4.79 Mб
Скачать

3.2. Реакции химически активных газов

Процессы расширения газов в значительной степени зависят от темпе­ратуры и химического состава этих газов. С этой точки зрения все газы можно разделить на две группы: реагирующие (активные) и не реагирующие (пассив­ные).

Активный газ — это газ, в котором при расширении происходят те или иные химические реакции; пассивный — расширяющийся без сопровождения химическими реакциями.

Обычно, химические реакции, происходящие в газах при их расшире­нии, отрицательно влияют на параметры термодинамического процесса и дви­гательной установки в целом. К таким реакциям относятся диссоциация, кон­денсация и ионизация.

Так как диссоциация (процесс разложения молекулярных соединений на составляющие элементы) протекает с поглощением большого количества тепла, то это приводит к снижению температуры потока, то есть уменьшению его общей энергетики, а, следовательно, к ухудшению основных параметров двигателя.

При расширении газового потока происходит снижение его температу­ры, а, следовательно, возможно явление конденсации — частичный переход рабочего тела из газообразного состояния в жидкое. Это отрицательно влияет на характеристики двигательной установки, уменьшая совершаемую газом по­лезную работу.

Наглядное представление возникновения потерь от конденсации пока­зано на рабочей диаграмме, рис.10.

Располагаемая работа

Потери располагаемой работы от конденсации Начало конденсации

Рис. 10

Ионизация — процесс отрыва электронов с внешних орбит электро­нейтральных атомов. Возникает при больших скоростях газового потока и обтекании им тел. Ионизация вызывает появление на выходе из сопла электро­заряженных частиц, вследствие чего наблюдается снижение тяги из-за взаи-

моотталкивания одноимённо заряженных ионов рабочего тела. Кроме того, в процессе эксплуатации корпус летательного аппарата приобретает высокий электрический потенциал, что может вызвать электрический разряд между корпусом этого ЛА и другими электронейтральными или противоположно за­ряженными телами. При этом могут образоваться мощные кратковременные дуговые разряды, порой приводящие к серьёзным последствиям. Даже просто нахождение корпуса ЛА под высоким электрическим потенциалом уже может быть небезопасно для экипажа и приборов. Поэтому в случае процесса иони­зации необходимо применять специальные устройства — нейтрализаторы, ко­торые усложняют конструкцию двигателя и увеличивают его массу.

3.3. Потери в химических ракетных двигателях

Рассмотрим идеальный ABCDи реальныйabcdциклы РД в рабочейP-Vдиаграмме, рис. 11.

Рис.11

АВ - изохорический процесс сжатия компонентов топлива в магистралях и турбонасосном агрегате (ТНА);

ВС - изобарный процесс с подводом тепла Qi; горение топлива в камере его рания;

CD - адиабатический процесс расширения газа в канале сопла;DA - изобарный процесс с отводом тепла Q2, происходящий за пределами дви­гателя;

Площади ABCD и abсd - работы реального и идеального циклов РД, соответ­ственно;

Площадь аАВв - потери на сжатие;Площадь ЬСс - потери в камере сгорания; Площадь CDdc - потери в канале сопла;

16

Потери в камере обусловлены:

а)диссоциацией;

б)трением газа о стенки камеры;

в)неполнотой сгорания топлива;

г)разгоном газового потока по тракту камеры.

Снижение потерь, обусловленных процессом диссоциации, может осущест­вляться путем:

а)использования топлив, не склонных к процессу диссоциации;

б)увеличения давления в камере сгорания до 300МПа. Потери в канале сопла обусловлены:

а)конденсацией;

б)трением потока о стенки сопла;

в)непараллельностью течения потока относительно оси камеры;

г)неадиабатичностью процесса.

3.4. Скорость истечения газов из сопла ракетного двигателя

Из теории газового потока известно, что для каждого поперечного се­чения канала при установившемся режиме течения выполняется условие: сум­ма энтальпии i газового потока и его кинетической энергии Ек остается ве­личиной постоянной.

Степень расширения газав канале сопла равна:

тогда:

Термический КПД:

Коэффициент тяги:

где:

К - безразмерный коэффициент тяги, характеризующий увеличение силы тяги за счёт расширяющейся части сопла;

B=f(k)

где:- относительная степень расширения сопла.