Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Opt.doc
Скачиваний:
18
Добавлен:
28.07.2019
Размер:
687.62 Кб
Скачать
      1. Отражение и преломление света на границе между диэлектриками: соотношение между углами падения, отражения и преломления; формула Френеля, угол Брюстера.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления: n = n2 / n1.

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2: n=v1/v2

Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

ФРЕНЕЛЯ ФОРМУЛЫ - определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломлённой световых волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей волны. Установлены О. Ж. Френелем в 1823 на основе представлений об упругих поперечных колебаниях эфира. Однако те же самые соотношения - Ф. ф.- следуют в результате строгого вывода из эл--магн. теории света при решении ур-ний Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления п1 и п2 (рис.). Углы j, j' и j'' есть соответственно углы падения, отражения и преломления, причём всегда n1 sinj=n2sinj'' (закон преломления) и |j|=|j'| (закон отражения). Амплитуду электрического вектора падающей волны А разложим на составляющую с амплитудой Ар, параллельную плоскости падения, и составляющую с амплитудой As, перпендикулярную плоскости падения. Аналогично разложим амплиту ды отражённой волны R на составляющие Rp и Rs, а преломлённой волны D - на Dp и Ds (на рис. показаны только р-составляющие). Ф. ф. для этих амплитуд имеют вид

Из (1) следует, что при любом значении углов j и j'' знаки Ар и Dp совпадают. Это означает, что совпадают и фазы, т. е. во всех случаях преломлённая волна сохраняет фазу падающей. Для компонент отражённой волны (Rp и Rs)фазовые соотношения зависят от j, n1 и n2; если j=0, то при n2>n1 фаза отражённой волны сдвигается на p.

Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.

Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.

Закон Брюстера: , где n21 — показатель преломления второй среды относительно первой, θBr — угол падения (угол Брюстера).

При отражении от одной пластинки под углом Брюстера интенсивность линейно поляризованного света очень мала (около 4 % от интенсивности падающего луча). Поэтому для того, чтобы увеличить интенсивность отраженного света (или поляризовать свет, прошедший в стекло, в плоскости, параллельной плоскости падения) применяют несколько скрепленных пластинок, сложенных в стопу — стопу Столетова. Легко проследить по чертежу происходящее. Пусть на верхнюю часть стопы падает луч света. От первой пластины будет отражаться полностью поляризованный луч (около 4 % первоначальной интенсивности), от второй пластины также отразится полностью поляризованный луч (около 3,75 % первоначальной интенсивности) и так далее. При этом луч, выходящий из стопы снизу, будет все больше поляризоваться в плоскости, параллельной плоскости падения, по мере добавления пластин.

      1. Поляризация света: круговая, эллиптическая и линейная поляризация, степень поляризации, вращение плоскости поляризации, эффект Фарадея, фазовые пластинки. Способы получения поляризованного света, сущность явления двулучепреломления. Матрица Мюллера. Вектор-параметр Стокса.

ПОЛЯРИЗАЦИЯ СВЕТА - физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Первые указания на поперечную анизотропию светового луча были получены в 1690 X. Гюйгенсом (Ch. Huygens) при опытах с кристаллами исландского шпата. Понятие "П. с." введено в оптику в 1704-06 И. Ньютоном (I. Newton). Существ. значение для понимания П. с. имело её проявление в эффектах интерференции света и, в частности, тот факт, что два световых луча с взаимно перпендикулярными плоскостями поляризации непосредственно не интерферируют. П. с. нашла естеств. объяснение в эл--магн. теории света, разработанной в 1865-73 Дж. К. Максвеллом (J. С. Maxwell), позднее - в квантовой электродинамике.

Поперечность эл--магн. волны лишает её осевой симметрии относительно направления её распространения из-за наличия выделенных направлений (вектора Е - напряжённости электрич. поля, вектора H - напряжённости магн. поля) в плоскости, перпендикулярной направлению волнового вектора. Состояние П. с. принято связывать с типом движения вектора Е, направление к-рого в нерелятивистском приближении определяет направление силы, действующей на заряж. частицу в поле световой волны. Полностью поляризованная световая волна характеризуется полной скоррелирован-ностью (когерентностью)колебаний взаимно ортогональных компонент вектора Е, т. е. постоянством их амплитуд и разности фаз. Все типы П. с. можно рассмотреть на примере монохроматич. эл--магн. волны, компоненты вектора Е к-рой меняются во времени по гармонич. закону, а сам вектор Е совершает неизменно воспроизводимое периодич. движение. Монохроматич. волна, очевидно, всегда полностью поляризована. Графически состояние П. с. обычно изображают с помощью эллипса поляризации - проекции траектории конца вектора Е на плоскость, перпендикулярную лучу (рис. 1). Проекц. картина полностью поляризованного света в общем случае имеет вид эллипса с правым или левым направлением вращения вектора Е (рис. 1, б, г, е). Такой свет наз. эллиптически поляризованным. Наиб, интерес представляют предельные случаи эллиптич. поляризации - линейная, когда эллипс поляризации вырождается в отрезок прямой линии (рис. 1, а, д), определяющий положение (азимут q) плоскости поляризации, и циркулярная (или круговая), когда эллипс поляризации представляет собой окружность (рис. 1, в).

Степень поляризации. Если пропустить частично поляризованный свет через поляризатор, то при вращении прибора вокруг направления луча интенсивность прошедшего света будет изменяться в пределах от Imax до Imin, причем переход от одного из этих значений к другому будет совершаться при повороте на угол, равный π/2 (за один полный поворот два раза будет достигаться максимальное и два раза минимальное значение интенсивности). Выражение называется степенью поляризации. Для плоскополяризованного света Imin=0 и Р=1; для естественного света Imax=Imin и P=0. К эллиптически- поляризованному свету понятие степени поляризации не применимо (у такого света колебания полностью упорядочены, так что степень поляризации всегда равна 1).

Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде — линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны — повёрнутая плоскость будет плоскостью поляризации в данный момент. Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной). Известен также поворот плоскости поляризации при отражении от анизотропной среды.

Эффект Фарадея (продольный электрооптический эффект Фарадея) — магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света.

Проходящее через изотропную среду линейно поляризованное излучение всегда может быть представлено как суперпозиция двух право- и левополяризованных волн с противоположным направлением вращения. Во внешнем магнитном поле показатели преломления для циркулярно право- и левополяризованного света становятся различными (n + и n − ). Вследствие этого, при прохождении через среду (вдоль силовых линий магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути. В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны λ, прошедшего в среде путь l, поворачивается на угол . В области не очень сильных магнитных полей разность n + − n − линейно зависит от напряжённости магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением , где ν — постоянная Верде, коэффициент пропорциональности, который зависит от свойств вещества, длины волны излучения и температуры.

Фазовые пластинки вносят фиксированную разность фаз между световыми компонентами, параллельными ее осям. Их применяют для преобразования линейной поляризации луча в круговую или, наоборот, для внесения требуемого фазового сдвига и для компенсации нежелательного фазового сдвига в оптических элементах. Фазовые пластинки часто изготовляют из одноосных диэлектрических кристаллов, в частности кальцита. Оптический ротатор осуществляет операцию вращения плоскости поляризации луча на требуемый угол. Одним из широко используемых ротаторов является фарадеевский ротатор, основанный на эффекте Фарадея, заключающемся во вращении плоскости поляризации оптического луча под действием магнитного поля.

Существует.несколько способов получения и анализа поляризованного света.

1. Поляризация при помощи поляроидов. Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислого нодхинина. Применение полярой^ дов является в настоящее время наиболее распространенным способом поляризации света.

2. Поляризация посредством отражения. Если естественный луч света

падает на черную полированную поверхность, то отраженный луч оказывается частично поляризованным. В качестве поляризатора и анализатора может быть употреблено зеркальное или достаточно хорошо

отполированное обычное оконное стекло, зачерненное с одной стороны асфальтовым лаком.

Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.

3. Поляризация посредством п р е л о м л е н и я. Световой луч поляризуется не только при отражении, но и при преломлении. В этом случае в качестве поляризатора и анализатора используется стопка сложенных вместе 10—15 тонких стеклянных пластинок, расположенных к падающим на них световым лучам под углом в 57°.

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ - раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно направления распространения При падении световой волны на поверхность анизотропной среды в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляризации падающей волны. Различают линейное и эллиптическое Д. л. в зависимости от свойств и симметрии кристаллов.

МЮЛЛЕРА МАТРИЦА - матрица линейного преобразования (матричный оператор), применяемая для анали-тич. описания действия поляризац. оптич. элементов (поляризаторов, фазовых пластинок, отражающих поверхностей, тонких плёнок) на произвольным образом поляризованные световые пучки (см. Поляризация света). M. м. представляет собой квадратную 4 4-матри-цу M, к-рая связывает 4-компонентный вектор Стокса S' светового пучка, прошедшего через оптич. элемент, с вектором Стокса S исходного пучка: S' =MS. Действие совокупности k оптич. элементов на световой пучок с вектором Стокса S описывается произведением соответствующих M. м.: S' = MkMk_1...M2M1S, причём матрицы элементов, последовательно проходимых световым пучком, располагаются в соответствующей последовательности справа налево. Знание M. м. оптич. элементов, расположенных на пути светового луча, позволяет путём простых формальных преобразований определить поляризац. состояние (вектор Стокса) света, прошедшего через оптич. систему. Метод расчёта эволюции поляризац. состояния света был предложен X. Мюллером (H. MUller) в 1943 и получил широкое распространение. В отличие от др. расчётных методов (аналитич. Джонса матричного метода, графич. метода сферы Пуанкаре), метод Мюллера применим и к деполяризующим системам, поскольку описывает связь между усреднёнными по времени интенсивностями разл. поляризац. компонент пучка, а не между амплитудами и фазами колебаний.

Поляризатор пропускает свет с эллиптичностью w (tgw = b/a, b и a - полуоси эллипса поляризации) и с фазовым сдвигом d между колебаниями по осям выбранной декартовой системы координат (азимут y большой полуоси эллипса поляризации относительно осей этой системы координат определяется выражением tg2y = tg2q cosd). M. м. для фазовой пластинки с азимутом оси анизотропии y, эллиптичностью нормальных колебаний w и фазовым сдвигом d имеет вид

Здесь введены обозначения: A1 = cos2wcos2ysind/2, A2 = cos2wsin2ysind/2, A3 = sin2wsind/2, A4 = cosd/2. Приведённые выражения для М. м. произвольного поляризатора и фазовой пластинки позволяют решать большое число задач преобразования поляризации света без учёта деполяризации.

Параметры Стокса. В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например, полудлинами сторон прямоугольника, в который вписан эллипс поляризации A1, A2 и разностью фаз ϕ, либо полуосями эллипса a, b и углом ψ между осью x и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса: Независимыми являются только три из них, ибо справедливо тождество: . Если ввести вспомогательный угол χ , определяемый выражением (знак + соответствует правой, а — левой поляризации), то можно получить следующие выражения для параметров Стокса:

, ,

На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса S1, S2, S3 интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса S0. Углы 2χ и 2ψ имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре, поэтому эта сфера называется сферой Пуанкаре.

Наряду с S1, S2, S3 используют также нормированные параметры Стокса s1=S1/S0, s2=S2/S0, s3=S3/S0. Для поляризованного света .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]