Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лк1(Форматированная).doc
Скачиваний:
3
Добавлен:
30.07.2019
Размер:
273.92 Кб
Скачать

Методы разработки алгоритмов

При решении простых задач можно воспользоваться определенной схемой. Есть раздел математики, называемый вычислительной математикой, в котором накоплен многолетний (а порой и многовековой) опыт решения разных вычислительных задач. Нет необходимости разрабатывать заново те алгоритмы, которые уже созданы - надо только их изучить и практически применять при решении своих задач. Таковы, например, методы отыскания корней нелинейных уравнений, вычисления определенных интегралов, численного интегрирования дифференциальных уравнений, методы сортиртировки данных и многие другие.

В большинстве случаев та или иная задача может быть решена несколькими численными методами. Выбор конкретного численного метода решения задачи обычно производится по следующим критериям:

- обеспечение оптимального времени решения задачи;

- обеспечение оптимального использования имеющихся ресурсов (памяти);

- обеспечение требуемой точности вычислений;

- минимальные стоимостные затраты;

- возможность использования стандартных подпрограмм.

При дальнейшей постановке задачи на ПК отыскивается наиболее рациональный способ решения задачи.

Однако, алгоритмы становятся все более и более сложными, соответственно растет трудность понимания того, как они работают. А еще труднее обнаружить и исправить в них ошибки или внести какие-то изменения. От 50 до 100% времени программист тратит на исправление и модификацию программ. В связи с этим индустрия программирования предлагает более систематичные подходы к программированию (а тем самым и к алгоритмизации задач в общем), т.е. предлагает методики, использование которых уменьшает вероятность ошибок в программах, упрощает их понимание и облегчает модификацию.

Для несложных алгоритмов грамотный подбор тестов и полное тестирование может дать полную картину работоспособности (неработоспособности).

Трассировка – это метод пошаговой фиксации динамического состояния алгоритма на некотором тесте. Часто осуществляется с помощью трассировочных таблиц, в которых каждая строка соответствует определённому состоянию алгоритма, а столбец – определённому состоянию параметров алгоритма (входных, выходных и промежуточных). Трассировка облегчает отладку и понимание алгоритма.

Процесс поиска и исправления (явных или неявных) ошибок в алгоритме называется отладкой алгоритма.

Некоторые (скрытые, труднообнаруживаемые) ошибки в сложных программных комплексах могут выявиться только в процессе их эксплуатации, на последнем этапе поиска и исправления ошибок – этапе сопровождения. На этом этапе также уточняют и улучшают документацию, обучают персонал использованию алгоритма (программы).

В заключение приведем общую структуру алгоритмического обеспечения. Критерии, по которым алгоритмы могут быть классифицированы, бывают разными, поэтому предлагаемая ниже схема отражает основные элементы структуры и в некоторых случаях является условной, в том смысле, что блоки приведенной на рис. структуры могут "перекрываться".

Основные формы использования алгоритмов – автономное, библиотечное, пакетное.

Автономный алгоритм определяется решаемой задачей, структурой используемых данных, структурой логических связей частей (модулей) алгоритма и языком псевдокодов, на котором представлен, описан алгоритм.

Библиотека алгоритмов определяется множеством задач, решаемых с помощью библиотеки, множеством алгоритмов для решения типовых задач некоторой предметной области и структурой используемых данных.

Пакет алгоритмов, как и библиотека, определяется множеством задач, решаемых с помощью пакета, множеством алгоритмов для решения типовых задач или их составных частей из некоторой предметной области, структурой используемых данных и обменов данными между задачами (модулями), специальным языком, на котором формулируется задание (последовательность этапов решаемой задачи, последовательность задач задания).

Тип данных (встречается также термин вид данных[источник?]) — фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и, возможно, способ реализации хранения значений и выполнения операций. Любые данные, которыми оперируют программы, относятся к определённым типам.