Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
97532.rtf
Скачиваний:
3
Добавлен:
01.08.2019
Размер:
8.09 Mб
Скачать

7.2. Свойства векторного произведения

1. При перестановке сомножителей векторное произведение меняет знак, т.е. а хb =(b хa ) (см. рис. 19).

 Векторы ахb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а , b , а хb и a , b , bxa противоположной ориентации). Стало быть axb = -(bxa ).

2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. (а хb ) = (а ) х b = а х (b ).

Пусть >0. Вектор (ахb ) перпендикулярен векторам а и b . Вектор ( а)хb также перпендикулярен векторам а и b (векторы а, а лежат в одной плоскости). Значит, векторы (ахb ) и ( а)хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:

Поэтому (a хb )= ахb . Аналогично доказывается при <0.

3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а||b <=>ахb =0.

В частности, i *i =j *j =k *k =0.

4. Векторное произведение обладает распределительным свойством:

(a+b) хс= ахс+b хс.

Примем без доказательства.

7.3. Выражение векторного произведения через координаты

Мы будем использовать таблицу векторного произведения векторов i , j и k :

если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает — третий вектор берется со знаком «минус».

Пусть заданы два вектора а=ахi +ayj +azk и b =bxi +byj +bzk . Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):

Полученную формулу можно записать еще короче:

так как правая часть равенства (7.1) соответствует разложению определителя третьего порядка по элементам первой строки.Равенство (7.2) легко запоминается.

7.4. Некоторые приложения векторного произведения

Установление коллинеарности векторов

Нахождение площади параллелограмма и треугольника

Согласно определению векторного произведения векторов а и b |а хb | = |а| * |b |sin , т. е. S пар = |а х b |. И, значит, S =1/2|а х b |.

Определение момента силы относительно точки

Пусть в точке А приложена сила F =АВ и пусть О — некоторая точка пространства (см. рис. 20).

 

Из физики известно, что моментом си лы F относительно точки О называется вектор М, который проходит через точку О и:

1) перпендикулярен плоскости, проходящей через точки О, А, В;

2) численно равен произведению силы на плечо

 

3) образует правую тройку с векторами ОА и A В.

Стало быть, М=ОА х F .

#13

Смешанное произведение трех векторов и его свойства

Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.

Рассмотрим свойства смешанного произведения.

  1. Геометрический смысл смешанного произведения. Смешанное произведение 3-х векторов с точностью до знака равно объёму параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .

Таким образом, и .

Д оказательство. Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения

. Предполагая, что и обозначив через h высоту параллелепипеда, находим .

Таким образом, при

Если же , то и . Следовательно, .

Объединяя оба эти случая, получаем или .

Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .

  1. Для любых векторов , , справедливо равенство

.

Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.

  1. При перестановке любых двух сомножителей смешанное произведение меняет знак.

Действительно, если рассмотрим смешанное произведение , то, например, или

.

  1. Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.

 

Доказательство.

    1. Предположим, что , т.е. , тогда или или .

Если , то или или . Поэтому – компланарны.

Если , то , , - компланарны.

    1. Пусть векторы – компланарны и α – плоскость, которой они параллельны , т. е. и . Тогда , а значит , поэтому или .

Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .

Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:

.

Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.

#19

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

П оложение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М1(x1, y1, z1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x, y и z и точка М перемещается по прямой.

КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

П усть М1(x1, y1, z1) – точка, лежащая на прямой l, и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t. Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t, y = –1 + 2t, z = 1 –t.

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox. Тогда направляющий вектор прямой перпендикулярен Ox, следовательно, m=0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t, получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде . Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz.

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

Углом между прямой и плоскостью будем называть угол, образованный прямой и её проекцией наплоскость. Пусть прямаяи плоскость заданы уравнениями

Р ассмотрим векторы и . Если угол между ними острый, то он будет , где φ – угол между прямой и плоскостью. Тогда .

Если угол между векторами и тупой, то он равен . Следовательно . Поэтому в любом случае . Вспомнив формулу вычисления косинуса угла между векторами, получим .

Условие перпендикулярности прямой и плоскости. Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарны, т.е. .

Условие параллельности прямой и плоскости. Прямая и плоскость параллельны тогда и только тогда, когда векторы и перпендикулярны.

#23

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]