Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Termodinamika.doc
Скачиваний:
0
Добавлен:
05.08.2019
Размер:
229.38 Кб
Скачать

Термодинамика - отдел теоретической физики, изучающий явления исключительно с точки зрения превращения энергии из одного вида в другой, не рассматривая их по существу.

Билет 1.

Макросистемой называется система, состоящая из очень большого числа частиц.

Термодинамический - Не рассматривая микроскопическое поведение отдельных частиц, термодинамика позволяет сделать ряд выводов относительно протекания процессов в макросистеме, оперируя некими интегральными понятиями - параметрами (давление, температура, объем) и функциями состояния (внутренняя энергия и энтропия).

Термодинамический метод основан на анализе условий и количественных соотношений, имеющих место в системе при различных превращениях энергии. Соотношения между разными видами энергии позволяют изучать физические свойства исследуемых систем при самых разнообразных процессах, в которых они участвуют и предсказать направления изменения состояния макросистем.

Статистический - Статистической физикой называется раздел физики, посвященный изучению свойств макросистем, исходя из свойств частиц, образующих эти системы, и взаимодействий между ними. Статистическая физика изучает закономерности, присущие всей совокупности частиц с помощью вероятностных методов. Она истолковывает физические свойства макросистем, непосредственно наблюдаемые на опыте и проявляющиеся как суммарный, усредненный результат действия отдельных частиц. Статистическая физика базируется на основных положениях молекулярно кинетической теории и изучает те свойства тел, которые наблюдаются на опыте (давление, температура и т.д.).

Параметры и функции состояния

Термодинамической системой (ТС) называется совокупность макроскопических тел, рассматриваемых методами термодинамики, т.е. с точки зрения обмена энергией между собой и внешней средой.

Термодинамическая система может находиться в различных состояниях, отличающихся температурой, давлением, объемом, плотностью и т.д. Подобные величины, характеризующие состояние системы, называются параметрами состояния - физические величины, характеризующие состояние термодинамической системы в условиях термодинамического равновесия.

Функция состояния в термодинамике — функция независимых параметров, определяющих равновесное состояние термодинамической системы; не зависит от пути (характера процесса), следуя которому система пришла в рассматриваемое равновесное состояние (т.е. не зависит от предыстории системы); к функциям состояния относят, в частности, характеристические функции системы:

  • внутренняя энергия;

  • энтропия;

  • энтальпия и др.

Термодинамическая работа и количество теплоты не являются функциями состояния, так как их значение определяется видом процесса, в результате которого система изменила своё состояние.

Микросостояние — это состояние системы, определяемое одновременным заданием координат и импульсов всех составляющих систему частиц. Знание микросостояния в некоторый момент времени позволяет однозначно предсказать эволюцию системы во все последующие моменты.

Макросостояние — это состояние системы, характеризуемое небольшим числом макроскопических параметров. Одно макросостояние может быть реализовано большим числом микросостояний за счет перестановки частиц, не меняющей наблюдаемого состояния.

Термодинамическая вероятность W — число способов, которыми может быть реализовано состояние физической системы, или число микросостояний, осуществляющих данное макросостояние . Вероятность термодинамическая не является вероятностью в математическом смысле. Она применяется в статистической физике для определения свойств систем, находящихся в термодинамическом равновесии.

Энтропия в статистической физике

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

где k — постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]