Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
механника.doc
Скачиваний:
5
Добавлен:
06.08.2019
Размер:
264.7 Кб
Скачать

9.Сила, возникающая в месте соприкосновения тел и препятствующая их относительному перемещению, называется силой трения

Сила трения покоя – действует на покоящиеся тела и находится из условия равновесия тела.

Сила трения скольжения – действует на движущиеся по поверхности тела и направлена в любой момент времени в сторону, противоположную скорости (рис.9). Модуль силы трения

Fтр=N, где (коэффициент трения скольжения) – безразмерная справочная величина, зависящая от материала соприкасающихся поверхностей, N – модуль силы реакции опоры. Как следует из выражения ( для определения силы трения скольжения необходимо сначала определить силу реакции опоры. Подчеркнем, что сила трения скольжения действует только на движущиеся тела.

12. Импульс материальной точки – векторная величина, равная произведению массы тела m на скорость его движения (рис.16). Направление вектора импульса совпадает с направлением вектора скорости (рис.16).

10. Сила, возникающая в месте соприкосновения тел и препятствующая их относительному перемещению, называется силой трения

Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого. Из выписанного выше уравнения следует, что коэффициент трения качения может быть определен как отношение момента трения качения Mt к прижимной силе N:

11. Упругая деформация — деформация, исчезающая после прекращения действий внешних сил. При этом тело принимает первоначальные размеры и форму.

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации/

Модуль Юнга (модуль упругости) — коэффициент, характеризующий сопротивление материала растяжению/сжатию при упругой деформации.

де:

E — модуль упругости, измеряемый в паскалях

F — сила в ньютонах,

S — площадь поверхности, по которой распределено действие силы,

l — длина деформируемого стержня,

x — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).

Коэффициент Пуассона (обозначается как ν или μ) характеризует упругие свойства материала. При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

12. И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса утверждает, что векторная сумма импульсов всех тел замкнутой системы есть величина постоянная.

13.. Центр масс— это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Систе́ма це́нтра масс— невращающаяся система отсчёта, связанная с центром масс механической системы. Обычно сокращается как с. ц. м. или с. ц. и. Суммарный импульс системы в с.ц.м. равен нулю. Для замкнутой системы её система центра масс инерциальна, тогда как незамкнутая система в общем случае может обладать неинерциальной системой центра масс. Суммарная кинетическая энергия механической системы в с.ц.м. минимальна среди всех систем отсчёта; в любой другой невращающейся (не обязательно инерциальной) системе отсчёта кинетическая энергия равна кинетической энергии в с.ц.м. плюс кинетическая энергия движения механической системы как целого (MV²/2, где М — полная масса механической системы, V — относительная скорость движения систем отсчёта).

14. Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное Иваном Мещерским в 1904 году. Оно имеет вид: где:

m — переменная масса тела;

v — скорость движения тела переменной массы;

F — внешние силы (сопротивление среды и т. п.);

тносительная скорость отделяющихся частиц; относительная скорость присоединяющихся частиц; секундный расход массы;

секундный приход массы.

15. Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы. Консервативными наз. силы, зависящие только от конфигурации системы, и работа которых по любому замкнутому контуру равна 0. Все силы, не являющиеся консервативными, называются неконсервативными. К ним относятся прежде всего диссипативные силы. Диссипативными называются такие силы, полная работа которых при любых движениях в замкнутой системе всегда отрицательна. Примером может служить сила трения или силы сопротивления в жидких и газообразных средах. Все эти силы зависят не только от конфигурации тел, но и от их относительных скоростей, кроме того они направлены против движения тела.

16. Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.Единица измерения в системе СИ — Джоуль.

Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил.Единицей измерения энергии в СИ является Джоуль. Ep = mgh,

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

17. Момент силы - векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

18. Моме́нт и́мпульса --характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса L частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где — угол между r и p, определяемый так, чтобы поворот от r к p производился против часовой стрелки с точки зрения наблюдателя, находящегося на положительной части оси вращения.

Зако́н сохране́ния моме́нта и́мпульса — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со времени.

19. Основое уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции. сновное уравнение динамики вращательного движения абсолютно твердого тела -это второй закон Ньютона для вращательного движения: M=J*e; M- момент сил; J- момент инерции тела; e- угловое ускорение тела.

20. Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового

Единица измерения СИ: кг·м².

21. Теоре́ма Ште́йнера- момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

где

JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню, (назовём её осью C) равен

Тогда согласно теореме Штейнера его момент относительно произвольной параллельной оси будет равен

где d — расстояние между искомой осью и осью C. В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти положив в последней формуле d = L / 2: